Heat transfer correlation for high-porosity open-cell foam

2009 ◽  
Vol 52 (5-6) ◽  
pp. 1488-1494 ◽  
Author(s):  
Indranil Ghosh
2012 ◽  
Vol 95 (6) ◽  
pp. 2015-2021 ◽  
Author(s):  
Charles C. Tseng ◽  
Ruth L. Sikorski ◽  
Raymond Viskanta ◽  
Ming Y. Chen

2019 ◽  
Vol 57 (4) ◽  
pp. 109-121
Author(s):  
O.V. Soloveva ◽  
◽  
N.D. Yakimov ◽  
N.D. Chichirova ◽  
◽  
...  

2021 ◽  
Vol 10 (16) ◽  
pp. e421101623844
Author(s):  
Paulo Wendel Corderceira Costa ◽  
Jornandes Dias da Silva

The hydrodynamic characterization of the solar-driven CO2 reforming of methane through b-SiC open-cell foam in a fluidized bed configuration is performed by reacting Methane (CH4) with carbon dioxide (CO2). The mathematical modelling is important to design and optimize the reforming methods. Usually, the reforming methods's application through b-SiC foam bed improves the heat transfer and mass transfer due to high porosity and surface area of the b-SiC foam. Fluidized Bed Membrane (FBM) Reformers can be substantially studied as a promising equipment to investigate the thermochemical conversion of CH4 using CO2 to produce solar hydrogen. This work has as main objective a theoretical modelling to describe the process variables of the solar-driven CO2 reforming of methane in the FBM reformer. The FBM reformer is filled with b-SiC open-cell foam where the thermochemical conversion is carried out. The model variables describe the specific aims of work and these objectives can be identified from each equation of the developed mathematical model. The present work has been proposed to study two specific aims as (i) The effective thermal conductivity's effect of the solid phase and (ii) molar flows of chemical components. The endothermic reaction temperature's profiles are notably increased as the numeral value of the effective thermal conductivity's effect of the solid phase. is rised. The solar-driven CO2 reforming method is suggested to improve the Production Rate (PR) of H2 regarding the PR of CO.


2001 ◽  
Vol 123 (4) ◽  
pp. 285-290 ◽  
Author(s):  
Gary Zheng ◽  
Allen Verret ◽  
Nancy Burke ◽  
Neal Prescott ◽  
Dennis Cai ◽  
...  

At the Multiphase ’99 Conference in Cannes, France, the authors presented a simple, yet general, formulation for effective conductivity of a porous insulation medium under pipeline application using fundamental continuity, momentum, and energy equations Zheng et al., 1999, “Heat Transfer in a Porous Insulation Medium in a Subsea Bundled Pipeline,” Paper No. 48 presented at Multiphase ’99, Cannes, France, ©BRH Group 1999. The effective conductivity was shown as a function of Darcy-modified Raleigh number only. The coefficients in the equation were then obtained from a set of tests for a simple pipe-in-pipe bundle with half-shell pieces of foam fitted around the inner pipe. Dramatic heat losses as experienced in some of field applications were recorded when the porous insulation foam is under high nitrogen pressure. All the heat losses were attributed to the increased heat convection within the porous insulation medium. Recognizing loose spaces between half-shells may contribute to the dramatic heat losses, the authors from R. J. Brown Deepwater conducted a new set of tests that used the same open-cell foam material, but with foamed-in-place application on the inner pipe wall. The new test data are used in this paper to derive an updated set of coefficients for the effective conductivity formulation. It is shown that such a foamed-in-place open-cell foam system maintains insulation effectiveness, even under high application pressures.


1996 ◽  
Vol 118 (1) ◽  
pp. 88-93 ◽  
Author(s):  
D. Doermann ◽  
J. F. Sacadura

Heat transfer in open cell foam insulation occurs by conduction through the solid material and through the gas in the cell interior and by thermal radiation, which propagates through the structure. The conductive process within these media is described using a simple parallel-series model. Spectral volumetric absorption and scattering coefficients as well as the spectral phase function are predicted using a combination of geometric optics laws and diffraction theory to model the interaction of radiation with the particles forming the foam. The particles considered are both struts formed at the juncture of three cells and strut junctures. The radiative properties can then be utilized to obtain a weighted extinction coefficient, which can be used in the Rosseland equation to obtain the radiative flux. The innovative part of the work lies in the radiative properties predictive model. This new model is compared with simpler ones.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2713 ◽  
Author(s):  
Xue Chen ◽  
Chuang Sun ◽  
Xinlin Xia ◽  
Rongqiang Liu

Forced flow and radiation-convection coupled heat transfer in an annulus filled with open-cell foam was numerically investigated at high temperatures. The Darcy-Brinkman-Forchheimer model was utilized to represent the fluid transport. The two-energy equation model was applied for the non-equilibrium heat exchange between the fluid and solid phases, while the radiation heat transfer within the foam material was solved using the P1 approximation. Two different cases of thermal boundary conditions were studied and discussed in detail, namely the inner wall with a constant heat flux while the outer wall was adiabatic (case I) and vice versa (case II). The effects of pertinent factors on the heat transfer characteristics were examined, such as the foam structural parameters and the radii ratio of the annulus. The temperature, local and average Nusselt number were predicted. The results indicate that neglecting the thermal radiation causes a large deviation in predicting the thermal performance of such foam-fluid systems. Increasing the porosity and pore diameter both promote the radiation heat transfer, while it is weakened by increasing the radii ratio. The average Nusselt number decreases as the porosity increases, while it exhibits a non-monotonic change with the pore diameter and radii ratio. Besides, case I shows a higher average Nusselt number than case II and presents an improved thermal performance.


Sign in / Sign up

Export Citation Format

Share Document