nitrogen pressure
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 35)

H-INDEX

25
(FIVE YEARS 2)

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 40
Author(s):  
Nikolay Gavrilov ◽  
Alexander Kamenetskikh ◽  
Petr Tretnikov ◽  
Alexey Nikonov ◽  
Leonid Sinelnikov ◽  
...  

Thin amorphous films of LiPON solid electrolyte were prepared by anodic evaporation of lithium orthophosphate Li3PO4 in an arc discharge with a self-heating hollow cathode at a nitrogen pressure of 1 Pa. Distribution of the arc current between two electrodes having an anode potential provided independent control of the evaporation rate of Li3PO4 and the density of nitrogen plasma. Stabilization of the evaporation rate was achieved using a crucible with multi-aperture cover having floating potential. The existence of a threshold value of discharge current (40 A) has been established, which, upon reaching ionic conductivity over 10−8 S/cm, appears in the films. Probe diagnostics of discharge plasma were carried out. It has been shown that heating the films during deposition by plasma radiation to a temperature of 200 °C is not an impediment to achieving high ionic conductivity of the films. Dense uniform films of LiPON thickness 1 mm with ionic conductivity up to 1 × 10−6 S/cm at a deposition rate of 4 nm/min are obtained.


Author(s):  
Kensuke Sumida ◽  
Kazufumi Hirukawa ◽  
Hideki Sakurai ◽  
Kacper Sierakowski ◽  
Masahiro Horita ◽  
...  

Abstract We performed an isothermal annealing study on Mg-implanted GaN at 1300 °C in an ultra-high-pressure (1 GPa) nitrogen ambient. Annealing for more than 30 min resulted in a high acceptor activation ratio and a low compensation ratio that were comparable to those obtained with annealing at 1400 °C for 5 min. We also performed annealing at 1300 °C in a reduced nitrogen pressure of 300 MPa which makes us possible to expand inner diameter of annealing equipment in the future. High electrical activation, similar to one obtained by annealing at 1 GPa, was successfully obtained.


2021 ◽  
Vol 232 ◽  
pp. 111560
Author(s):  
Tigran G. Akopdzhanyan ◽  
Sergey I. Rupasov ◽  
Stepan Vorotilo

2021 ◽  
Vol 29 (1) ◽  
pp. 61-64
Author(s):  
V. Nadtoka ◽  
M. Kraiev ◽  
A. Borisenko ◽  
V. Kraieva

Method for ion-plasma deposition is applied for covering of heat-resistant Ni-Cr alloy XH78T. Coating deposition is performed under nitrogen gas atmosphere at the pressure from 3×10-5 to 1×10-2 Torr. The nitrogen content in the coating is reached up to 2,7 %. Nitrated coatings with a thickness of 184-222 μm is obtained without embrittlement and with a uniform distribution of microhardness. The effect of the nitrogen pressure in a vacuum chamber on the structure of the coatings, which changes from homogeneous to columnar with conical crystallites, is presented. Nitration increases microhardness of the coatings from 3669 to 7575 HV, the wear resistance of the coatings increases by 6-8 times. The received coatings can be used to increase the durability of metallurgical equipment parts.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1058
Author(s):  
Xi Wu ◽  
Hongcheng Wang ◽  
Dongxiong Ling ◽  
Chuanyu Jia ◽  
Wei Lü ◽  
...  

GaN crystals are synthesized by recrystallization technique in Na-Li-Ca alloy melt under different N2 pressure. X-ray powder diffraction results confirm that the structure of crystals is GaN with wurtzite type and there still have raw powders remaining. The total mass of GaN decreases with the nitrogen pressure reduces. No GaN crystals are found in the solution under N2 pressure of 0.4 MPa. The morphologies of the crystal are mainly prism and pyramid. The size of the crystal increases when closer to the liquid surface. Raman spectra indicates that these crystals are stress-free and crystal grown at 3.6 MPa has high structural quality or low impurity concentrations. The results reveal that the solubility and supersaturation of the solution are controlled by N2 pressure. The principle of GaN crystal synthesis by recrystallization is discussed.


Author(s):  
Yuki Nakashima ◽  
Yuki Ozeki ◽  
You Zhou ◽  
Hideki Hyuga ◽  
Shinobu Hashimoto
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4182
Author(s):  
Alan Wilmański ◽  
Magdalena Zarzecka-Napierała ◽  
Zbigniew Pędzich

This paper describes combusting loose powder beds of mixtures of aluminum metal powders and aluminum oxide powders with various grain sizes under various nitrogen pressure. The synthesis conditions required at least 20/80 weight ratio of aluminum metal powder to alumina powder in the mix to reach approximately 80 wt% of γ-AlON in the products. Finely ground fused white alumina with a mean grain size of 5 μm was sufficient to achieve results similar to very fine alumina with 0.3 μm grains. A lower nitrogen pressure of 1 MPa provided good results, allowing a less robust apparatus to be used. The salt-assisted combustion synthesis upon addition of 10 wt% of ammonium nitrite resulted in a slight increase in product yield and allowed lower aluminum metal powder content in mixes to be ignited. Increasing the charge mass five times resulted in a very similar γ-AlON yield, providing a promising technology for scaling up. Synthesis in loose powder beds could be utilized for effective production of relatively cheap and uniform AlON powder, which could be easily prepared for forming and sintering without intensive grounding and milling, which usually introduce serious contamination.


2021 ◽  
Vol 5 (7) ◽  
pp. 179
Author(s):  
Brice Taillet ◽  
René Pailler ◽  
Francis Teyssandier

Ceramic matrix composites (CMCs) have been prepared and optimized as already described in part I of this paper. The fibrous preform made of Hi-Nicalon S fibers was densified by a matrix composed of Si2N2O prepared inside the CMC by reacting a mixture of Si and SiO2 under high nitrogen pressure. This part describes the oxidation resistance and mechanical properties of the optimized CMC. The CMC submitted to oxidation in wet oxygen at 1400 °C for 170 h exhibited an oxidation gradient from the surface to almost the center of the sample. In the outer part of the sample, Si2N2O, Si3N4 and SiC were oxidized into silica in the cristobalite-crystallized form. The matrix microstructure looks similar to the original one at the center of the sample, while at the surface large pores are observed and the fiber/matrix interphase is consumed by oxidation. The elastic modulus and the hardness measured at room temperature by nano-indentation are, respectively, 100 and 8 GPa. The elastic modulus measured at room temperature by tensile tests ranges from 150 to 160 GPa and the ultimate yield strength from 320 to 390 MPa, which corresponds to a yield strain of about 0.6%. The yield strength identified by acoustic emission is about 40 MPa.


2021 ◽  
Vol 5 (7) ◽  
pp. 178
Author(s):  
Brice Taillet ◽  
René Pailler ◽  
Francis Teyssandier

Ceramic matrix composites (CMCs) have been designed and developed for extreme operating environments. The aim of the present study is to look for a rapid densification process providing a high level of material performance. The fibrous preform was made of Hi-Nicalon S fibers woven in a 3D interlock weave. The matrix was composed of Si2N2O prepared inside the CMCs by reacting a mixture of Si and SiO2 under high nitrogen pressure (1 to 3 MPa). Silica was either impregnated by slurry or obtained by oxidation of silicon grains inside the preform. The synthesis reaction was initiated by heating the impregnated preform by means of a carbon resistor submitted to Joule effect. Composition, homogeneity and porosity of the formed matrix were studied and interpreted as a function of the experimental parameters (nitrogen pressure, heating rate of the preform) as well as the recorded thermal history of the process. The present results show that the matrix formation is almost completed in less than one minute. Melting of silicon has a major influence on the process. Competition was observed between the formation of Si3N4 and Si2N2O, which could be mainly controlled by the heating rate of the preform and the nitrogen partial pressure.


Sign in / Sign up

Export Citation Format

Share Document