A model of liquid film breakdown formed due to impingement of a two-phase jet on a horizontal surface

2010 ◽  
Vol 53 (23-24) ◽  
pp. 5456-5464 ◽  
Author(s):  
J. Mikielewicz ◽  
D. Mikielewicz ◽  
S. Gumkowski
Author(s):  
Hiroshi Kanno ◽  
Youngbae Han ◽  
Yusuke Saito ◽  
Naoki Shikazono

Heat transfer in micro scale two-phase flow attracts large attention since it can achieve large heat transfer area per density. At high quality, annular flow becomes one of the major flow regimes in micro two-phase flow. Heat is transferred by evaporation or condensation of the liquid film, which are the dominant mechanisms of micro scale heat transfer. Therefore, liquid film thickness is one of the most important parameters in modeling the phenomena. In macro tubes, large numbers of researches have been conducted to investigate the liquid film thickness. However, in micro tubes, quantitative information for the annular liquid film thickness is still limited. In the present study, annular liquid film thickness is measured using a confocal method, which is used in the previous study [1, 2]. Glass tubes with inner diameters of 0.3, 0.5 and 1.0 mm are used. Degassed water and FC40 are used as working fluids, and the total mass flux is varied from G = 100 to 500 kg/m2s. Liquid film thickness is measured by laser confocal displacement meter (LCDM), and the liquid-gas interface profile is observed by a high-speed camera. Mean liquid film thickness is then plotted against quality for different flow rates and tube diameters. Mean thickness data is compared with the smooth annular film model of Revellin et al. [3]. Annular film model predictions overestimated the experimental values especially at low quality. It is considered that this overestimation is attributed to the disturbances caused by the interface ripples.


2021 ◽  
Author(s):  
Huacheng Zhang ◽  
Tutomo Hisano ◽  
Shoji Mori ◽  
Hiroyuki Yoshida

Abstract Annular gas-liquid two-phase flows, such as the flows attached to the fuel rods of boiling water reactors (BWR), are a prevalent occurrence in industrial processes. At the gas-liquid interface of such flows, disturbance waves with diverse velocity and amplitude commonly arise. Since the thin liquid film between two successive disturbance waves leads to the dryout on the heating surface and limits the performance of the BWRs, complete knowledge of the disturbance waves is of great importance for the characterized properties of disturbance waves. The properties of disturbance waves have been studied by numerous researchers through extensive experimental and analytical approaches. However, most of the experimental data and analyses available in the literature are limited to the near atmospheric condition. In consideration of the properties of liquids and gases under atmospheric pressure which are distinct from those under BWR operating conditions (7 MPa, 285 °C), we employed the HFC134a gas and liquid ethanol whose properties at relatively low pressure and temperature (0.7 MPa, 40 °C) are similar to those of steam and water under BWR operating conditions as working fluids in a tubular test section having an inside diameter 5.0mm. Meanwhile, the liquid film thickness is measured by conductance probes. In this study, we report the liquid film thickness characteristics in a two-phase HFC134a gas-liquid ethanol flow. A simple model of the height of a disturbance wave was also proposed.


Author(s):  
Youjia Zhang ◽  
Weimin Ma ◽  
Shengjie Gong

This study is concerned with liquid film dynamics and stability of annular flow, which plays an important role in understanding film rupture and dryout in boiling heat transfer. The research work starts from designing and making a test facility which enables the visualization and measurement of liquid film dynamics. A confocal optical sensor is applied to track the evolution of film thickness. A horizontal rectangular channel made of glass is used as the test section. Deionized water and air are supplied into that channel in such a way that an initial stratified flow forms, with the liquid film on the bottom wall. The present study is focused on characterization of liquid film profile and dynamics in term of interfacial wave and shear force induced film rupture under adiabatic condition. Based on the experimental data and analysis, it is found that given a constant water flowrate, the average thickness of water film decreases with increasing air flowrate, while the interfacial wave of the two-phase flow is intensified. As the air flowrate reaches a critical value, a localized rupture of the water film occurs.


2014 ◽  
Vol 762 ◽  
pp. 68-109 ◽  
Author(s):  
Georg F. Dietze ◽  
Christian Ruyer-Quil

AbstractWe consider the axisymmetric arrangement of an annular liquid film, coating the inner surface of a narrow cylindrical tube, in interaction with an active core fluid. We introduce a low-dimensional model based on the two-phase weighted residual integral boundary layer (WRIBL) formalism (Dietze & Ruyer-Quil, J. Fluid Mech., vol. 722, 2013, pp. 348–393) which is able to capture the long-wave instabilities characterizing such flows. Our model improves upon existing works by fully representing interfacial coupling and accounting for inertia as well as streamwise viscous diffusion in both phases. We apply this model to gravity-free liquid-film/core-fluid arrangements in narrow capillaries with specific attention to the dynamics leading to flooding, i.e. when the liquid film drains into large-amplitude collars that occlude the tube cross-section. We do this against the background of linear stability calculations and nonlinear two-phase direct numerical simulations (DNS). Due to the improvements of our model, we have found a number of novel/salient physical features of these flows. First, we show that it is essential to account for inertia and full interphase coupling to capture the temporal evolution of flooding for fluid combinations that are not dominated by viscosity, e.g. water/air and water/silicone oil. Second, we elucidate a viscous-blocking mechanism which drastically delays flooding in thin films that are too thick to form unduloids. This mechanism involves buckling of the residual film between two liquid collars, generating two very pronounced film troughs where viscous dissipation is drastically increased and growth effectively arrested. Only at very long times does breaking of symmetry in this region (due to small perturbations) initiate a sliding motion of the liquid film similar to observations by Lister et al. (J. Fluid Mech., vol. 552, 2006, pp. 311–343) in thin non-flooding films. This kickstarts the growth of liquid collars anew and ultimately leads to flooding. We show that streamwise viscous diffusion is essential to this mechanism. Low-frequency core-flow oscillations, such as occur in human pulmonary capillaries, are found to set off this sliding-induced flooding mechanism much earlier.


2019 ◽  
Vol 9 (4) ◽  
pp. 3039-3070
Author(s):  
Mohamed M. Hussein ◽  
A. Al-Sarkhi ◽  
H. M. Badr ◽  
M. A. Habib

Sign in / Sign up

Export Citation Format

Share Document