scholarly journals Flow Characteristics of Liquid Films of Annular Two-Phase Flow in a Curved DoubleTube. Flow Rate of Liquid Film and Mechanism of Film Formation.

2000 ◽  
Vol 66 (652) ◽  
pp. 3189-3195
Author(s):  
Osamu WATANABE ◽  
Shoji KURIYAMA
Author(s):  
Hao Feng ◽  
Xun Zhu ◽  
Rong Chen ◽  
Qiang Liao

In this study, visualization study on the gas-liquid two phase flow characteristics in a gas-liquid-solid microchannel reactor was carried out. Palladium nanocatalyst was coated onto the polydopamine functionalized surface of the microchannel through eletroless deposition. The materials characterization results indicated that palladium nanocatalyst were well dispersed on the modified surface. The effects of both the gas and liquid flow rates as well as inlet nitrobenzene concentration on the two-phase flow characteristics were studied. The experimental results revealed that owing to the chemical reaction inside the microreactor, the gas slug length gradually decreased along the flow direction. For a given inlet nitrobenzene concentration, increasing the liquid flow rate or decreasing the gas flow rate would make the variation of the gas slug length more obvious. High inlet nitrobenzene concentration would intensify both the nitrobenzene transfer efficiency and gas reactants consumption, and thereby the flow pattern in the microchannel was transferred from Taylor flow into bubble flow. Besides, the effect of both flow rate and original nitrobenzene concentration on the variation of nitrobenzene conversion and the desired product aniline yield were also discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chunlei Shao ◽  
Ning Bao ◽  
Sheng Wang ◽  
Jianfeng Zhou

Purpose The purpose of this paper is to propose a prediction method of gas-liquid two-phase flow patterns and reveal the flow characteristics in the suction chamber of a centrifugal pump. Design/methodology/approach A transparent model pump was experimentally studied, and the gas-liquid two-phase flow in the pump was numerically simulated based on the Eulerian–Eulerian heterogeneous flow model. The numerical simulation method was verified from three aspects: the flow pattern in the suction chamber, the gas spiral length and the external characteristics of the pump. The two-phase flow in the suction chamber was studied in detail by using the numerical simulation method. Findings There are up to eight flow patterns in the suction chamber. However, at a certain rotational speed, only six flow patterns are observed at the most. At some rotational speeds, only four flow patterns appear. The gas spiral length has little relationship with the gas flow rate. It decreases with the increase of the liquid flow rate and increases with the increase of the rotational speed. The spiral flow greatly increases the turbulence intensity in the suction chamber. Originality/value A method for predicting the flow pattern was proposed. Eight flow patterns in the suction chamber were identified. The mechanism of gas-liquid two-phase flow in the suction chamber was revealed. The research results have reference values for the stable operation of two-phase flow pumps and the optimization of suction chambers.


1983 ◽  
Vol 105 (4) ◽  
pp. 700-705 ◽  
Author(s):  
A. G. Ostrogorsky ◽  
R. R. Gay ◽  
R. T. Lahey

A steady-state analytical model has been developed to predict channel pressure drop as a function of inlet vapor flow rate and applied heat flux during conditions of countercurrent two-phase flow. The interfacial constitutive relations utilized are flow structure dependent and allow for the existence of either smooth or wavy liquid films. A computer code was developed to solve the analytical model. Predictions of Δp versus vapor flow rate were found to agree favorably with experimental data from adiabatic, air/water systems. In addition, the model was used to predict countercurrent flow conditions in heated channels characteristic of a BWR/4 nuclear reactor fuel assembly.


Equipment ◽  
2006 ◽  
Author(s):  
Marijus Seporaitis ◽  
S. Gasiunas ◽  
Raimondas Pabarcius

Sign in / Sign up

Export Citation Format

Share Document