Condensation heat transfer and flow characteristics of R-134a flowing through corrugated tubes

2011 ◽  
Vol 54 (11-12) ◽  
pp. 2673-2682 ◽  
Author(s):  
Suriyan Laohalertdecha ◽  
Somchai Wongwises
2009 ◽  
Vol 131 (5) ◽  
Author(s):  
M. H. M. Grooten ◽  
C. W. M. van der Geld

When traditional air-to-air cooling is too voluminous, heat exchangers with long thermosyphons offer a good alternative. Experiments with a single thermosyphon with a large length-to-diameter ratio (188) and filled with R-134a are presented and analyzed. Saturation temperatures, filling ratios, and angles of inclination have been varied in wide ranges. A higher sensitivity of evaporation heat transfer coefficients on reduced pressure than in previous work has been found. Measurements revealed the effect of pressure or the saturation temperature on condensation heat transfer. The condensate film Reynolds number that marks a transition from one condensation heat transfer regime to another is found to depend on pressure. This effect was not accounted for by correlations from the literature. New correlations are presented to predict condensation and evaporation heat transfer rates.


2003 ◽  
Author(s):  
B. Yu ◽  
C. X. Lin ◽  
M. A. Ebadian ◽  
R. C. Prattipati

This paper presents an experimental investigation of condensation heat transfer and pressure drop characteristics of refrigerant R-134a flowing through an annular helicoidal passage with the hydraulic diameter of 8.5 mm. The angles of helix axis are oriented at 0, 45, 90 degrees to gravity. The overall and refrigerant-side heat transfer coefficients and pressure drops are experimentally determined at saturation temperature 35°C, refrigerant mass flux 35–180 kg/s·m2, and cooling water temperature 27°C. The results show that orientation has significant influence on the thermal and hydraulic behaviors of the helical pipe. The results can be employed for reference in the effective design of annular helicoidal heat exchangers with R-134a as the working fluid.


Author(s):  
Suriyan Laohalertdecha ◽  
Somchai Wongwises

The effects of pitch and depth on the condensation heat transfer of R-134a flowing inside corrugated tubes are experimentally investigated. The test section is a horizontal tube-in-tube heat exchanger. The refrigerant flows in the inner tube and the water flows in the annulus. The length of heat exchanger is 2 m. A smooth tube and corrugated tubes having inner diameters of 8.7 mm are used as an inner tube. The corrugation pitches used in this study are 5.08, 6.35, and 8.46 mm. Similarly, the corrugation depths are 1, 1.25, and 1.5 mm. The effects of corrugation pitch and depth on tube wall temperature, heat transfer coefficient and frictional pressure drop are discussed. The results illustrate that the maximum heat transfer coefficient and frictional pressure drop obtained from the corrugated tube are up to 50% and 70% higher than those obtained from the smooth tube, respectively.


Sign in / Sign up

Export Citation Format

Share Document