Bubble nucleation, growth and surface temperature oscillations on a rapidly heated microscale surface immersed in a bulk subcooled but locally superheated liquid under partial vacuum

2011 ◽  
Vol 54 (25-26) ◽  
pp. 5612-5622 ◽  
Author(s):  
Richard E. Cavicchi ◽  
C. Thomas Avedisian

The thermal stability of an exothermic chemically reacting slab with time-periodic surface temperature variation is examined. It is shown, on the basis of a good approximation due to Boddington, Gray and Walker, that the behaviour depends on the solutions of an ordinary differential equation of first order. The equation contains a modified amplitude, for small values of which it can be reduced to a particular form of Hill’s equation. Critical values of the Frank-Kamenetskii parameter, as a function of the amplitude ϵ and frequency ω of the surface temperature oscillations, are derived from the latter equation. For ω = 2π and 0 ≼ ϵ ≼ 2 the values are in good agreement with previously calculated ones.


1958 ◽  
Vol 25 (4) ◽  
pp. 603-606
Author(s):  
Halil Yüksel

Abstract The paper is concerned with a free plate that consists of an elastic, perfectly plastic material and is subjected to a harmonically varying temperature at one face, while the other face is kept at a constant temperature and the edge is perfectly insulated. The thermal stresses associated with the steady-state temperature oscillations are analyzed, and the development of plastic regions is discussed.


Sign in / Sign up

Export Citation Format

Share Document