Theoretical study of the effective thermal conductivity of graphite foam based on a unit cell model

2011 ◽  
Vol 54 (25-26) ◽  
pp. 5491-5496 ◽  
Author(s):  
K.C. Leong ◽  
H.Y. Li
2014 ◽  
Vol 102 (3) ◽  
pp. 403-426 ◽  
Author(s):  
Xiao Hu Yang ◽  
Jia Xi Bai ◽  
Hong Bin Yan ◽  
Jiu Jie Kuang ◽  
Tian Jian Lu ◽  
...  

Author(s):  
Xinxin Zhang ◽  
Gaosheng Wei ◽  
Fan Yu

Based on the open-cell nano-porous structure features, a cubic array of nano-spheres unit cell model describing the coupled conduction of gas and solid in aerogel super insulator is developed. By one-dimensional heat conduction analysis in the unit cell, the effective thermal conductivity expression is obtained. The results show that the model matches well with the experimental data and nano-porous structure, nanometer size effect of solids as well as the very high specific surface area are the key factors make aerogel have very low thermal conductivity. There exists an optimal density value where the thermal conductivity of aerogel is minimum. Thermal radiative heat transfer is the dominating heat transfer mechanism of aerogel at an elevated temperature. It can decrease the thermal conductivity value of aerogel effectively at an elevated temperature by doping carbon or other matters which can strongly absorb infrared light at 3∼8 μm.


2021 ◽  
Vol 506 ◽  
pp. 230192
Author(s):  
Yunxiang Chen ◽  
Jie Bao ◽  
Zhijie Xu ◽  
Peiyuan Gao ◽  
Litao Yan ◽  
...  

2011 ◽  
Vol 488-489 ◽  
pp. 759-762
Author(s):  
L.Y. Li ◽  
M.H. Aliabadi ◽  
Pi Hua Wen

A Meshfree approach for continuum damage modeling of 3D orthogonal woven composites is presented. Two different shape function constructions, Radial basis (RB) function and Moving kriging (MK) interpolation, are utilized corresponding with Galerkin method in the Meshfree approach. The failure of two different unit cell models, straight-edge and smooth fabric unit cell model respectively, is compared.


Sign in / Sign up

Export Citation Format

Share Document