Heat transfer enhancement in thermal energy storage using phase change material by optimal arrangement

Author(s):  
Yutao Huo ◽  
Xiaowen Pang ◽  
Zhonghao Rao
2019 ◽  
Vol 116 ◽  
pp. 00038 ◽  
Author(s):  
Maria K. Koukou ◽  
Michail Gr. Vrachopoulos ◽  
George Dogkas ◽  
Christos Pagkalos ◽  
Kostas Lymperis ◽  
...  

A prototype Latent Heat Thermal Energy Storage (LHTES) unit has been designed, constructed, and experimentally analysed for its thermal storage performance under different operational conditions considering heating application and exploiting solar and geothermal energy. The system consists of a rectangular tank filled with Phase Change Material (PCM) and a finned tube staggered Heat Exchanger (HE) while water is used as Heat Transfer Fluid (HTF). Different HTF inlet temperatures and flow rates were tested to find out their effects on LHTES performance. Thermal quantities such as HTF outlet temperature, heat transfer rate, stored energy, were evaluated as a function of the conditions studied. Two commercial organic PCMs were tested A44 and A46. Results indicate that A44 is more efficient during the charging period, taking into account the two energy sources, solar and heat pump. During the discharging process, it exhibits higher storage capacity than A46. Concluding, the developed methodology can be applied to study different PCMs and building applications.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
K. Nithyanandam ◽  
R. Pitchumani

Concentrating solar power plants (CSPs) are being explored as the leading source of renewable energy for future power generation. Storing sun's energy in the form of latent thermal energy of a phase change material (PCM) is desirable for use on demand including times when solar energy is unavailable. Considering a latent thermal energy storage (LTES) system incorporating heat pipes to enhance heat transfer between the heat transfer fluid (HTF) and the PCM, this paper explores the dynamic response of the LTES system subjected to repeated cycles of charging and discharging. A transient computational analysis of a shell-and-tube LTES embedded with two horizontal heat pipes is performed for repeated charging and discharging of the PCM to analyze the dynamic performance of the LTES, and the augmentation in the cyclic performance of the LTES embedded with heat pipes is investigated. A model low temperature phase change material system is considered in the present study, with the physical results being scalable to high temperature systems used in CSP plants.


Sign in / Sign up

Export Citation Format

Share Document