Mean flame height and radiative heat flux characteristic of medium scale rectangular thermal buoyancy source with different aspect ratios in a sub-atmospheric pressure

Author(s):  
Fei Tang ◽  
Kongjin Zhu ◽  
Mansheng Dong ◽  
Qing Shi
2015 ◽  
Vol 14 (1) ◽  
pp. 40
Author(s):  
F. R. Centeno ◽  
E. E. C. Rodrigues

Most of the accidents that occur in liquid fuel storage tank parks are caused by fire. This paper presents a numerical study using Large Eddy Simulation through Fire Dynamics Simulator (FDS) for the simulation of liquid fuel (ethanol) storage tanks at different scales (real-scale 1:1, and reduced- scales, 1:2, 1:4, 1:8). This paper proposes correlations for flame height, and temperature profile and radiative heat flux profile in the region adjacent to the tanks. Correlations have as inputs the diameters of the tanks in real- and reduced-scale, temperature profiles and radiative heat flux profiles for a reduced-scale tank simulation, and then provide as outputs flame height and temperature profiles and radiative heat flux profiles for the tank in real- scale. Percentage errors of the correlations found in this study are lower than 2.0% and 0.6% for the maximum radiative heat flux and maximum temperature, respectively.


Author(s):  
T. E. Magin ◽  
L. Caillault ◽  
A. Bourdon ◽  
C. O. Laux

2000 ◽  
Author(s):  
Christian Proulx ◽  
Daniel R. Rousse ◽  
Rodolphe Vaillon ◽  
Jean-François Sacadura

Abstract This article presents selected results of a study comparing two procedures for the treatment of collimated irradiation impinging on one boundary of a participating one-dimensional plane-parallel medium. These procedures are implemented in a CVFEM used to calculate the radiative heat flux and source. Both isotropically and anisotropically scattering media are considered. The results presented show that both procedures provide results in good agreement with those obtained using a Monte Carlo method, when the collimated beam impinges normally.


Author(s):  
Thomas Vega ◽  
Rachel A. Wasson ◽  
Brian Y. Lattimer ◽  
Thomas E. Diller

Sign in / Sign up

Export Citation Format

Share Document