AN ASSESSMENT OF WSGG MODEL FOR CALCULATION OF RADIATIVE HEAT FLUX IN FDS

Author(s):  
Hosein Sadeghi ◽  
Hadi Bordbar
Author(s):  
T. E. Magin ◽  
L. Caillault ◽  
A. Bourdon ◽  
C. O. Laux

2000 ◽  
Author(s):  
Christian Proulx ◽  
Daniel R. Rousse ◽  
Rodolphe Vaillon ◽  
Jean-François Sacadura

Abstract This article presents selected results of a study comparing two procedures for the treatment of collimated irradiation impinging on one boundary of a participating one-dimensional plane-parallel medium. These procedures are implemented in a CVFEM used to calculate the radiative heat flux and source. Both isotropically and anisotropically scattering media are considered. The results presented show that both procedures provide results in good agreement with those obtained using a Monte Carlo method, when the collimated beam impinges normally.


Author(s):  
Thomas Vega ◽  
Rachel A. Wasson ◽  
Brian Y. Lattimer ◽  
Thomas E. Diller

Author(s):  
David L. Damm ◽  
Andrei G. Fedorov

Thermo-mechanical failure of components in planar-type solid oxide fuel cells (SOFCs) depends strongly on the local temperature gradients at the interfaces of different materials. Therefore, it is of paramount importance to accurately predict the temperature fields within the stack, especially near the interfaces. Because of elevated operating temperatures (of the order of 1000 K or even higher), radiation heat transfer could become a dominant mode of heat transfer in the SOFCs. In this study, we extend our recent work on radiative effects in solid oxide fuel cells (Journal of Power Sources, Vol. 124, No. 2, pp. 453–458) by accounting for the spectral dependence of the radiative properties of the electrolyte material. The measurements of spectral radiative properties of the polycrystalline yttria-stabilized zirconia (YSZ) electrolyte we performed indicate that an optically thin approximation can be used for treatment of radiative heat transfer. To this end, the Schuster-Schwartzchild two-flux approximation is used to solve the radiative transfer equation (RTE) for the spectral radiative heat flux, which is then integrated over the entire spectrum using an N-band approximation to obtain the total heat flux due to thermal radiation. The divergence of the total radiative heat flux is then incorporated as a heat sink into a 3-D thermo-fluid model of a SOFC through the user-defined function utility in the commercial FLUENT CFD software. The results of sample calculations are reported and compared against the baseline cases when no radiation effects are included and when the spectrally gray approximation is used for treatment of radiative heat transfer.


Author(s):  
Simon Lille ◽  
Wlodzimierz Blasiak ◽  
Magnus Mo¨rtberg ◽  
Tomasz Dobski ◽  
Weihong Yang

High Temperature Air Combustion has already been applied in various industrial furnaces. Steel producers use most of the revamped furnaces. These are: • Batch and continuous heating furnaces in which HRS burners with open flames were used, • Batch and continuous heat treatment furnaces in which HRS burners with radiant tubes were used. Apart from steel industry the HTAC systems were applied to melt aluminium or to incinerate odour, vapour gases for example in pulp and paper industry. In all these applications very high fuel savings (sometimes as high as 60%), reduction of NOx and production increase (by 20–50%) was achieved. Progress in applications of the HTAC increased also needs of more information and data required by furnace and process designers. For this reason study in larger scale where at least one set of regenerative burner systems is installed are very much needed. Aim of such studies is not only to verify furnace performance with respect to the known general advantages of HTAC but are focused on specific problems related to furnace and high-cycle regenerative burners operation, process and product properties or type of fuels used. Parallel to the semi-industrial tests numerical models of furnaces have to be developed and verified. In this work, mainly results of heat flux measurements as well as results of numerical modeling of heat transfer in the HTAC test furnace are presented. Results were obtained for propane combustion at firing rate equal to 200 kW. The general code, STAR-CD, was employed in this work to analyse the HTAC test furnace numerically. HTAC test furnace at Royal Institute of Technology (KTH) with capacity of 200 kW was used in this work. The furnace is equipped with two different high-cycle regenerative systems (HRS). In both systems the “honeycomb” regenerator is used. The two-burner system is made of two pairs (four burners) of high cycle-regenerative burners with switching time between 10 and 40 seconds. HTAC test furnace is equipped with four air-cooled tubes to take away heat from the furnace. The total radiative heat flux measured in the HTAC furnace shows very uniform distribution over the whole combustion chamber. For total radiative heat flux, the values are in the range of 110–130 kW/m2 as measured by means of the total radiative heat flow meter at the furnace temperature 1100 C. Average total radiation flux on the top furnace wall is as high as 245.5 kW/m2 as well as total incident radiation flux. Total radiation heat flux on the air-cooled tube surface is very uniform along and around the tubes. Average radiant heat flux taken away by air cool tube is 35.46 kW/m2.


Sign in / Sign up

Export Citation Format

Share Document