scholarly journals Investigation of the through-plane effective oxygen diffusivity in the porous media of PEM fuel cells: Effects of the pore size distribution and water saturation distribution

Author(s):  
Shixue Wang ◽  
Yulin Wang
2016 ◽  
Author(s):  
F. C. Ferreira ◽  
R. Booth ◽  
R. Oliveira ◽  
N. Bize-Forest ◽  
A. Boyd ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yuan Yuejin ◽  
Zhao Zhe ◽  
Nie Junnan ◽  
Xu Yingying

In view of the fact that the zone model for porous media drying cannot disclose the mechanism of liquid phase distribution effectively, a pore network model for the slow isothermal drying process of porous media was developed by applying the theories of pore network drying and transport-process, which fused the physical parameters of porous media, such as porosity, pore mean diameter, and pore size distribution into the model parameters, and a sand bed drying experiment was conducted to verify the validity of this model. The experiment and simulation results indicate that the pore network model could explain the slow isothermal drying process of porous media well. The pore size distributions of porous media have a great effect on the liquid phase distribution of the drying process. The dual-zone model is suitable for the porous media whose pore size distribution obeys Gaussian distribution, while the three-zone model is suitable for the porous media whose pore size distribution obeys the lognormal distribution when the drying analysis of porous media is conducted.


2021 ◽  
Vol 11 (1) ◽  
pp. 58-68
Author(s):  
Ferenc Remeczki

The present study represents possibilities of calculating the connate water saturation - CWS - values of samples from unconventional reservoirs and how to evaluate the obtained result. CWS is an extremely important property of the reservoir rocks. It basically determines the value of the resource and can also predict production technology difficulties. For the samples included in the measurement program, significant or extremely high CWS values were determined. Analysis of the corrected pore size distribution proved to be the most appropriate method for interpreting CWS values, although, it also shows some correlation with the most frequent pore radius - MFPR - and porosity.


2019 ◽  
Vol 55 (11) ◽  
pp. 10037-10049
Author(s):  
Zhenlei Yang ◽  
Binayak P. Mohanty ◽  
Yalchin Efendiev ◽  
Zhuping Sheng

2009 ◽  
Vol 43 (9) ◽  
pp. 3248-3253 ◽  
Author(s):  
Zhen Yang ◽  
Xiao-Feng Peng ◽  
Duu-Jong Lee ◽  
Ming-Yuan Chen

Author(s):  
Aimad Oukhlef ◽  
Abdlehak Ambari ◽  
Ste´phane Champmartin ◽  
Antoine Despeyroux

In this paper a new method is presented in order to determine the pore size distribution in a porous media. This original technique uses the non Newtonian yield-pseudo-plastic rheological properties of some fluid flowing through the porous sample. In a first approximation, the very well-known and simple Carman-Kozeny model for porous media is considered. However, despite the use of such a huge simplification, the analysis of the geometry still remains an interesting problem. Then, the pore size distribution can be obtained from the measurement of the total flow rate as a function of the imposed pressure gradient. Using some yield-pseudo-plastic fluid, the mathematical processing of experimental data should give an insight of the pore-size distribution of the studied porous material. The present technique was successfully tested analytically and numerically for classical pore size distributions such as the Gaussian and the bimodal distributions using Bingham or Casson fluids (the technique was also successfully extended to Herschel-Bulkley fluids but the results are not presented in this paper). The simplicity and the cheapness of this method are also its assets.


Sign in / Sign up

Export Citation Format

Share Document