Numerical simulation on film cooling with compound angle of blade leading edge model for gas turbine

Author(s):  
Wen-jing Gao ◽  
Zhu-feng Yue ◽  
Lei Li ◽  
Zhe-nan Zhao ◽  
Fu-juan Tong
2016 ◽  
Vol 23 (5) ◽  
pp. 713-720
Author(s):  
V. Yu. Petelchyts ◽  
A. A. Khalatov ◽  
D. N. Pysmennyi ◽  
Yu. Ya. Dashevskyy

Author(s):  
Elon J. Terrell ◽  
Brian D. Mouzon ◽  
David G. Bogard

Studies of film cooling performance for a turbine airfoil predominately focus on the reduction of heat transfer to the external surface of the airfoil. However, convective cooling of the airfoil due to coolant flow through the film cooling holes is potentially a major contributor to the overall cooling of the airfoil. This study used experimental and computational methods to examine the convective heat transfer to the coolant as it traveled through the film cooling holes of a gas turbine blade leading edge. Experimental measurements were conducted on a model gas turbine blade leading edge composed of alumina ceramic which approximately matched the Biot number of an engine airfoil leading edge. The temperature rise in the coolant from the entrance to the exit of the film cooling holes was measured using a series of internal thermocouples and an external traversing thermocouple probe. A CFD simulation of the model of the leading edge was also done in order to facilitate the processing of the experimental data and provide a comparison for the experimental coolant hole heat transfer. Without impingement cooling, the coolant hole heat transfer was found to account for 50 to 80 percent of the airfoil internal cooling, i.e. the dominating cooling mechanism.


Author(s):  
D. H. Zhang ◽  
M. Zeng ◽  
Q. W. Wang

The blade leading edge region is the most susceptible to the high temperature ablation. Film cooling strategy is often used to protect this region from being burned. In this paper, from the view point of heat flux transfer direction, the two simulated heat transfer coefficients method were compared. It was found that, for the present study, the conventional method of using same jet and main flow temperature (i.e. the isothermal method) to obtain film cooling heat transfer coefficient is not adequate and can not reflect the heat transfer phenomenon in film cooling, whereas the non-isothermal method using cooled jet and wall can reflect both the heat transfer and flow phenomenon. Subsequently, taking the real engine’s AGTB blade as the object of present study, numerical approach was conducted to reveal the film cooling characteristic of AGTB blade leading edge with trenched compound angle holes, and the configuration of compound angle holes without trench was also included for comparison. And it was found that the trenched hole with compound angle can achieve better cooling and heat insulation effect in the spanwise direction.


2014 ◽  
Vol 971-973 ◽  
pp. 143-147 ◽  
Author(s):  
Ping Dai ◽  
Shuang Xiu Li

The development of a new generation of high performance gas turbine engines requires gas turbines to be operated at very high inlet temperatures, which are much higher than the allowable metal temperatures. Consequently, this necessitates the need for advanced cooling techniques. Among the numerous cooling technologies, the film cooling technology has superior advantages and relatively favorable application prospect. The recent research progress of film cooling techniques for gas turbine blade is reviewed and basic principle of film cooling is also illustrated. Progress on rotor blade and stationary blade of film cooling are introduced. Film cooling development of leading-edge was also generalized. Effect of various factor on cooling effectiveness and effect of the shape of the injection holes on plate film cooling are discussed. In addition, with respect to progress of discharge coefficient is presented. In the last, the future development trend and future investigation direction of film cooling are prospected.


Sign in / Sign up

Export Citation Format

Share Document