surface conductance
Recently Published Documents


TOTAL DOCUMENTS

290
(FIVE YEARS 22)

H-INDEX

40
(FIVE YEARS 3)

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Gisele Cristina Dotto Rubert ◽  
Vanessa de Arruda Souza ◽  
Tamíres Zimmer ◽  
Gustavo Pujol Veeck ◽  
Alecsander Mergen ◽  
...  

Energy and water exchange between the surface and the atmosphere are important drivers to Earth’s climate from local to global scale. In this study, the energy dynamic and the biophysical mechanisms that control the energy partitioning over a natural grassland pasture over the Brazilian Pampa biome are investigated using two micrometeorological sites located 300 km apart, in Southern Brazil. The latent heat flux, LE, was the main component of the energy balance in both autumn-winter (AW) and spring-summer (SS) periods. Annually, approximately 60% of the available energy is used for evapotranspiration (ET). However, the Bowen ratio presents seasonal variability greater in AW than SS. Global radiation, Rg, is the atmospheric variable controlling LE and sensible heat flux, H. Hysteresis curves in the daily cycle were observed for ET and surface conductance, Cs, regarding the environmental variables, net radiation, vapor pressure deficit, and air temperature. Among the variables analyzed in the Pampa biome, surface conductance and evapotranspiration respond more strongly to the vapor pressure deficit. The hysteresis cycles formed by ET and conductance show a substantial biophysical control in the ET process. The results obtained here allowed a comprehension of the biophysical mechanisms involved in the energy partition process in natural grassland. Therefore, this study can be used as a base for research on land-use changes in this unique ecosystem of the Pampa biome.


Author(s):  
W. Li ◽  
R. Lipton ◽  
M. Maier

We explain the Lorentz resonances in plasmonic crystals that consist of two-dimensional nano-dielectric inclusions as the interaction between resonant material properties and geometric resonances of electrostatic nature. One example of such plasmonic crystals are graphene nanosheets that are periodically arranged within a non-magnetic bulk dielectric. We identify local geometric resonances on the length scale of the small-scale period. From a materials perspective, the graphene surface exhibits a dispersive surface conductance captured by the Drude model. Together these phenomena conspire to generate Lorentz resonances at frequencies controlled by the surface geometry and the surface conductance. The Lorentz resonances found in the frequency response of the effective dielectric tensor of the bulk metamaterial are shown to be given by an explicit formula, in which material properties and geometric resonances are decoupled. This formula is rigorous and obtained directly from corrector fields describing local electrostatic fields inside the heterogeneous structure. Our analytical findings can serve as an efficient computational tool to describe the general frequency dependence of periodic optical devices. As a concrete example, we investigate two prototypical geometries composed of nanotubes and nanoribbons.


2021 ◽  
Vol 11 (18) ◽  
pp. 8649
Author(s):  
Yan Liu ◽  
Sha Zhang ◽  
Jiahua Zhang ◽  
Lili Tang ◽  
Yun Bai

Accurate estimation of evapotranspiration (ET) can provide useful information for water management and sustainable agricultural development. However, most of the existing studies used physical models, which are not accurate enough due to our limited ability to represent the ET process accurately or rarely focused on cropland. In this study, we trained two models of estimating croplands ET. The first is Medlyn–Penman–Monteith (Medlyn–PM) model. It uses artificial neural network (ANN)-derived gross primary production along with Medlyn’s stomatal conductance to compute surface conductance (Gs), and the computed Gs is used to estimate ET using the PM equation. The second model, termed ANN-PM, directly uses ANN to construct Gs and simulate ET using the PM equation. The results showed that the two models can reasonably reproduce ET with ANN-PM showing a better performance, as indicated by the lower error and higher determination coefficients. The results also showed that the performances of ANN-PM without the facilitation of any remote sensing (RS) factors degraded significantly compared to the versions that used RS factors. We also evidenced that ANN-PM can reasonably characterize the time-series changes of ET at sites having a dry climate. The ANN-PM method can reasonably estimate the ET of croplands under different environmental conditions.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 839
Author(s):  
Xiaodong Niu ◽  
Shirong Liu

Global climate models project more frequent drought events in Central China. However, the effect of seasonal drought on ecosystem water use efficiency (WUE) and water regulation strategy in Central China’s natural forests is poorly understood. This study investigated variations in WUE associated with drought in a natural oak (Quercus aliena) forest in Central China from 2017 to 2020 at several timescales based on continuous CO2 and water vapor flux measurements. Results showed that the 4-year mean gross ecosystem production (GEP), evapotranspiration (ET) and WUE of the natural oak forest was 1613.2 ± 116 g Cm−2, 637.8 ± 163.3 mm and 2.6 ± 0.68 g Ckg−1 H2O, with a coefficient of variation (CV) of 7.2%, 25.6% and 26.4%, respectively. The inter-annual variation in WUE was large, primarily due to the variation in ET caused by seasonal drought. Drought increased WUE distinctly in summer and decreased it slightly in autumn. During summer drought, surface conductance (gs) usually decreased with an increase in VPD, but the ratios of stomatal sensitivity (m) and reference conductance (gsref) were 0.21 and 0.3 molm−2s−1ln(kPa)−1 in the summer of 2019 and 2020. Strong drought can also affect ecosystem WUE and water regulation strategy in the next year. Decrease in precipitation in spring increased annual WUE. These results suggested that drought in different seasons had different effects on ecosystem WUE. Overall, our findings suggest that the natural oak forest did not reduce GEP by increasing WUE (i.e., reducing ET) under spring and summer drought, which could be due to its typical anisohydric characteristics, although it can also reduce stomatal opening during long-term drought.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 123
Author(s):  
Fatemeh Tajik ◽  
Zahra Babamahdi ◽  
Mehdi Sedighi ◽  
George Palasantzas

In the current study, we explore the sensitivity of the actuation dynamics of electromechanical systems on novel materials, e.g., Bi2Se3, which is a well-known 3D Topological Insulator (TI), and compare their response to metallic conductors, e.g., Au, that are currently used in devices. Bifurcation and phase portraits analysis in conservative systems suggest that the strong difference between the conduction states of Bi2Se3 and Au yields sufficiently weaker Casimir force to enhance stable operation. Furthermore, for nonconservative driven systems, the Melnikov function and Poincare portrait analysis probed the occurrence of chaotic behavior leading to increased risk for stiction. It was found that the presence of the TI enhanced stable operation against chaotic behavior over a significantly wider range of operation conditions in comparison to typical metallic conductors. Therefore, the use of TIs can allow sufficient surface conductance to apply electrostatic compensation of residual contact potentials and, at the same time, to yield sufficiently weak Casimir forces favoring long-term stable actuation dynamics against chaotic behavior.


2021 ◽  
Author(s):  
Astrid Vatne ◽  
Lena M. Tallaksen ◽  
Norbert Pirk ◽  
Ane V. Vollsnes ◽  
Kolbjørn Engeland ◽  
...  

<p>Evapotranspiration links the energy, water and carbon budgets of wetlands, a key ecosystem in high latitudes. While the evapotranspiration in high latitude wetlands is largely controlled by available energy, the surface also exerts a non-negligible control. The surface control on evapotranspiration, often represented by the surface conductance, is sensitive to environmental variables such as vapour pressure deficit (VPD). Previous studies have shown that higher surface conductance leads to higher evapotranspiration from high latitude wetlands than from high latitude forests during periods of high VDP. However, it is unclear how the surface conductance-VPD relation varies across climatic gradients. To study the sensitivity of surface conductance to increasing values of VPD, we use data from three recently established eddy covariance sites in Norway, situated along high latitude climatic gradients. The sites included are Hisåsen (680 m.a.s.l., N 61.11°, E 12.24°), Finse (1200 m.a.s.l., N 60.59°, E 7.53°) and Iškoras (360 m.a.s.l, N 69.34°, E 25.29°). We first estimate surface conductance from the eddy covariance data, by inverting the Penman-Monteith equation. We then apply a boundary line analysis to assess the sensitivity of the surface conductance to VPD. Our preliminary results show a lower sensitivity of surface conductance to VPD on the northernmost site, compared to the two sites at lower latitude. Further work is needed to relate the observed variations in surface conductance-VPD relation to surface characteristic, and we hypothesize that the observered lower sensitivity in surface conductance is related to lower values of leaf area index. This work is a contribution to the Strategic Research Initiative ‘Land Atmosphere Interaction in Cold Environments’ (LATICE) of the University of Oslo.</p>


2020 ◽  
Author(s):  
Ren Wang ◽  
Pierre Gentine ◽  
Jiabo Yin ◽  
Lijuan Chen ◽  
Jianyao Chen ◽  
...  

Abstract. Evapotranspiration (ET) accompanied by water and heat transport in the hydrological cycle is a key component in regulating surface aridity. Existing studies on changes in surface aridity have typically estimated ET using semi-empirical equations or parameterizations of land surface processes, which are based on the assumption that the parameters in the equation are stationary. However, plant physiological effects and its response to a changing environment are dynamically modifying ET, thereby challenging this assumption and limiting the estimation of long-term ET. In this study, the latent heat flux (ET in energy units) and sensible heat flux were retrieved for recent decades on a global scale using machine learning approach and driven by ground-based observations from flux towers and weather stations. The study resulted in several findings, namely that the evaporative fraction (EF) – the ratio of latent heat flux to available surface energy – exhibited a relatively decreasing trend on fractional land surfaces; In particular, the decrease in EF was accompanied by an increase in long-term runoff as assessed by precipitation (P) minus ET, accounting for 27.06 % of the global land areas. The signs were indicative of reduced surface conductance, which further emphasized that land-surface vegetation has major impacts on regulating the water and energy cycles, as well as aridity variability.


2020 ◽  
Vol 375 (1810) ◽  
pp. 20190516
Author(s):  
Anders Lindroth ◽  
Jutta Holst ◽  
Maj-Lena Linderson ◽  
Mika Aurela ◽  
Tobias Biermann ◽  
...  

The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m −2 yr −1 during 2018 as compared to the reference year. The NEP anomaly ranged between −389 and +74 g C m −2 yr −1 with a median value of −59 g C m −2 yr −1 . This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.


2020 ◽  
Vol 375 (1810) ◽  
pp. 20190521 ◽  
Author(s):  
Mana Gharun ◽  
Lukas Hörtnagl ◽  
Eugénie Paul-Limoges ◽  
Shiva Ghiasi ◽  
Iris Feigenwinter ◽  
...  

Using five eddy covariance flux sites (two forests and three grasslands), we investigated ecosystem physiological responses to the 2018 drought across elevational gradients in Switzerland. Flux measurements showed that at lower elevation sites (below 1000 m.a.s.l.; grassland and mixed forest) annual ecosystem productivity (GPP) declined by approximately 20% compared to the previous 2 years (2016 and 2017), which led to a reduced annual net ecosystem productivity (NEP). At the high elevation sites, however, GPP increased by approximately 14% and as a result NEP increased in the alpine and montane grasslands, but not in the subalpine coniferous forest. There, increased ecosystem respiration led to a reduced annual NEP, despite increased GPP and lengthening of the growing period. Among all ecosystems, the coniferous forest showed the most pronounced negative stomatal response to atmospheric dryness (i.e. vapour pressure deficit, VPD) that resulted in a decline in surface conductance and an increased water-use efficiency during drought. While increased temperature enhanced the water-use efficiency of both forests, de-coupling of GPP from evapotranspiration at the low-elevation grassland site negatively affected water-use efficiency due to non-stomatal reductions in photosynthesis. Our results show that hot droughts (such as in 2018) lead to different responses across plants types, and thus ecosystems. Particularly grasslands at lower elevations are the most vulnerable ecosystems to negative impacts of future drought in Switzerland. This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.


Sign in / Sign up

Export Citation Format

Share Document