cooling behavior
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 26)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 850 (1) ◽  
pp. 012020
Author(s):  
F Ferdaus ◽  
N Raghukiran

Abstract The two-equation turbulence models used for the present study are the commonly used standard k-ॉ model and k-ω model. In order to achieve this target, numerical simulation was initiated in Ansys Fluent to simulate a flow over a flat test surface with a diameter of 4mm straight, circular film cooling hole at angled injections of 25°, 30°, 35°and 40°. The comparison between the numerical calculations and the theoretical results showed the standard k-ω turbulence model gave better predictions against those with the standard k-ω turbulence models. The ability of k-ω model in closely predicting the cooling behavior is due to the precise modeling of the lateral spreading of the film. The isotropic two-equation turbulence models exhibited a huge dissent. The results also indicated that increasing the mass flow rates in the mainstream channels reduces the temperature distribution along the stream-wise direction.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Irfan Ahmed ◽  
Lei Shi ◽  
Hannu Pasanen ◽  
Paola Vivo ◽  
Partha Maity ◽  
...  

AbstractHot charge carriers (HC) are photoexcited electrons and holes that exist in nonequilibrium high-energy states of photoactive materials. Prolonged cooling time and rapid extraction are the current challenges for the development of future innovative HC-based optoelectronic devices, such as HC solar cells (HCSCs), hot energy transistors (HETs), HC photocatalytic reactors, and lasing devices. Based on a thorough analysis of the basic mechanisms of HC generation, thermalization, and cooling dynamics, this review outlines the various possible strategies to delay the HC cooling as well as to speed up their extraction. Various materials with slow cooling behavior, including perovskites and other semiconductors, are thoroughly presented. In addition, the opportunities for the generation of plasmon-induced HC through surface plasmon resonance and their technological applications in hybrid nanostructures are discussed in detail. By judiciously designing the plasmonic nanostructures, the light coupling into the photoactive layer and its optical absorption can be greatly enhanced as well as the successful conversion of incident photons to HC with tunable energies can also be realized. Finally, the future outlook of HC in optoelectronics is highlighted which will provide great insight to the research community.


2021 ◽  
Author(s):  
Sota Yamamura ◽  
Hiroyuki Yoshida ◽  
Naoki Horiguchi ◽  
Akiko Kaneko ◽  
Yutaka Abe

Abstract When the core meltdown accident occurs in the nuclear plant, molten corium falls into a coolant pool of the lower plenum. It is considered that the molten corium jet is broken up, cooled, and solidified with fuel-coolant interaction (FCI). However, the coolant pool could be a shallow condition by the leakage and evaporation of the coolant. In this situation, it is considered that the corium jet bottoms and spreads without the jet breakup. From the viewpoint of safety, understanding a jet behavior and estimating a cooling behavior are needed. The purpose of this study is to clarify the mechanism of the liquid jet behavior in a shallow pool as the fundamental process for estimating the cooling behavior in the real machine. In this paper, we discuss the spreading behavior of the liquid jet after bottoming. The jet injection experiment was conducted using test fluids. By using the 3D-LIF method, the 3D visualization of the liquid jet was Successfully implemented. From the visualization result, the following behaviors were seen. After bottoming, the jet spread radially with the liquid film. As the jet spreading behavior, the liquid film was rolled up to the inside, and the vortex was formed. After a certain time, the vortex was broken. Then the flow and the number density of the fragment were changed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kevin P. Furlong ◽  
Eric Kirby

The utilization of thermal-chronological data to constrain mountain building processes exploits the links among rock uplift, exhumation, and cooling during orogenesis. Conceptually, periods of rapid uplift and associated denudation will lead to cooling of rocks as they approach Earth’s surface. The linkage between uplift and exhumation can be complex, but in practice exhumation is often assumed to directly track uplift. The reconstruction of temperature-time histories via thermochronologic systems provides a proxy method to relate the cooling of rock as it is exhumed toward the surface to orogenesis. For the rapid exhumation rates that can occur in active orogenic systems the thermal history will be complex as a result of heat advection, rates of propagation of thermal perturbations, and other processes that affect the cooling behavior. These effects become amplified as exhumation rates increase, and in regions experiencing exhumation rates greater than ∼0.2–0.3 mm/yr (0.2–0.3 km/Ma) simple assumptions of cooling through a constant geotherm will bias the subsequent interpretation. Here we explore, through a suite of generalized models, the impact of exhumation rate and duration on the resulting thermal history and apparent age results. We then apply lessons from these simple exhumation systems to data sets from the high-relief ranges along the eastern margin of the Tibetan Plateau to determine exhumation histories constrained by those data. The resulting exhumation histories provide constraints on the onset of Cenozoic exhumation, the subsequent pace of exhumation, and on the tectonic history of one of the major fault systems in the central Longmen Shan.


2021 ◽  
Vol 232 ◽  
pp. 113350
Author(s):  
Randi L. Snopkowski ◽  
Nicole T. Vargas ◽  
Christopher L. Chapman ◽  
Blair D. Johnson ◽  
Elizabeth G. Mietlicki-Baase ◽  
...  

2021 ◽  
pp. 1-25
Author(s):  
Connor Wiese ◽  
James L. Rutledge

Abstract For many years, there has been interest in evaluating the effect of density differences between the coolant and the freestream in terms of the cooling effectiveness. Numerous experiments have been conducted with different cooling gases or different temperature gases to evaluate the effect of the density ratio. With little agreement on the best way to scale the density ratio effect, it has become commonplace for some researchers to insist upon matching the density ratio for experimental work. Unfortunately, the density is not the only property that differs between the various coolant gases used in experiments, and it is certainly not the only property difference between the coolant and the freestream in actual engines. In the present work, we isolate some of these effects through film cooling experiments with carefully selected and conditioned coolant gases at near identical densities but exhibiting other property differences. Most significantly, coolant specific heat varied, but subtle viscosity and thermal conductivity effects were present. Through measurements of the adiabatic effectiveness from a film cooling hole on a leading edge model, we are able to show that the specific heat effect is just as important as the density effect, providing more evidence that effects in prior research attributed to density differences, are actually a combination of density and other property differences.


2021 ◽  
pp. 259-259
Author(s):  
Vashista Ademane ◽  
Ravikiran Kadoli ◽  
Vijaykumar Hindasageri

The Present paper discusses film cooling behavior through numerical simulation in the presence of a twisted tape insert inside the film hole. The twisted tape insert imparts a swirl to the coolant flow. Coolant swirl intensity is controlled by varying the pitch of the twisted tape resulting in swirl numbers (S) of 0.0289, 0.116 and 0.168. The film cooling performance is evaluated using area-averaged effectiveness and heat transfer coefficient for blowing ratios of 0.5, 1.0, 1.5 and 2.0. Results revealed a significant amount of improvement in averaged effectiveness with the addition of swirl. Coolant swirl predominantly modifies the jet trajectory resulting in a reduced jet penetration and increased lateral expansion. Further investigation on the effect of twisted tape thickness on the coolant distribution has been found to be negligible. Pressure losses occurring due to the insertion of twisted tape inside the film hole is evaluated through the coefficient of discharge which indicated the necessity of higher pumping power than the film cooling case with no-swirl.


2021 ◽  
Vol 182 ◽  
pp. 116031
Author(s):  
Jiajia Chen ◽  
Yucan Fu ◽  
Ning Qian ◽  
Huafei Jiang ◽  
Chan Y. Ching ◽  
...  

Author(s):  
Connor J. Wiese ◽  
James L. Rutledge

Abstract For many years, there has been interest in evaluating the effect of density differences between the coolant and the freestream in terms of the cooling effectiveness. Numerous experiments have been conducted with different cooling gases or different temperature gases to evaluate the effect of the density ratio. With little agreement on the best way to scale the density ratio effect, it has become commonplace for some researchers to insist upon matching the density ratio for experimental work. Unfortunately, the density is not the only property that differs between the various coolant gases used in experiments, and it is certainly not the only property difference between the coolant and the freestream in actual engines. In the present work, we isolate some of these effects through film cooling experiments with carefully selected and conditioned coolant gases at near identical densities but exhibiting other property differences. Most significantly, coolant specific heat varied, but subtle viscosity and thermal conductivity effects were present. Through measurements of the adiabatic effectiveness from a film cooling hole on a leading edge model, we are able to show that the specific heat effect is just as important as the density effect, providing more evidence that effects in prior research attributed to density differences, are actually a combination of density and other property differences.


Sign in / Sign up

Export Citation Format

Share Document