Apparent permeability for liquid transport in nanopores of shale reservoirs: Coupling flow enhancement and near wall flow

Author(s):  
Qi Zhang ◽  
Yuliang Su ◽  
Wendong Wang ◽  
Mingjing Lu ◽  
Guanglong Sheng
2010 ◽  
Vol 31 (8) ◽  
pp. 1521-1528 ◽  
Author(s):  
L. Goubergrits ◽  
B. Thamsen ◽  
A. Berthe ◽  
J. Poethke ◽  
U. Kertzscher ◽  
...  

2016 ◽  
Vol 796 ◽  
pp. 257-284 ◽  
Author(s):  
Christian J. Kähler ◽  
Sven Scharnowski ◽  
Christian Cierpka

The understanding and accurate prediction of turbulent flow separation on smooth surfaces is still a challenging task because the separation and the reattachment locations are not fixed in space and time. Consequently, reliable experimental data are essential for the validation of numerical flow simulations and the characterization and analysis of the complex flow physics. However, the uncertainty of the existing near-wall flow measurements make a precise analysis of the near-wall flow features, such as separation/reattachment locations and other predicted near-wall flow features which are under debate, often impossible. Therefore, the periodic hill experiment at TU Munich (ERCOFTAC test case 81) was repeated using high resolution particle image velocimetry and particle tracking velocimetry. The results confirm the strong effect of the spatial resolution on the near-wall flow statistics. Furthermore, it is shown that statistically stable values of the turbulent flow variables can only be obtained for averaging times which are challenging to realize with highly resolved large eddy simulation and direct numerical simulation techniques. Additionally, the analysis implies that regions of correlated velocity fluctuations with rather uniform streamwise momentum exist in the flow. Their size in the mean flow direction can be larger than the hill spacing. The possible impact of the correlated turbulent motion on the wake region is discussed, as this interaction might be important for the understanding and control of the flow separation dynamics on smooth bodies.


2018 ◽  
Vol 55 ◽  
pp. 508-519 ◽  
Author(s):  
Shan Wang ◽  
Juntai Shi ◽  
Ke Wang ◽  
Zheng Sun ◽  
Yanan Miao ◽  
...  

Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050017 ◽  
Author(s):  
TAO WU ◽  
SHIFANG WANG

A better comprehension of the behavior of shale gas transport in shale gas reservoirs will aid in predicting shale gas production rates. In this paper, an analytical apparent permeability expression for real gas is derived on the basis of the fractal theory and Fick’s law, with adequate consideration of the effects of Knudsen diffusion, surface diffusion and flexible pore shape. The gas apparent permeability model is found to be a function of microstructural parameters of shale reservoirs, gas property, Langmuir pressure, shale reservoir temperature and pressure. The results show that the apparent permeability increases with the increase of pore area fractal dimension and the maximum effective pore radius and decreases with an increase of the tortuosity fractal dimension; the effects of Knudsen diffusion and surface diffusion on the total apparent permeability cannot be ignored under high-temperature and low-pressure circumstances. These findings can contribute to a better understanding of the mechanism of gas transport in shale reservoirs.


2019 ◽  
Vol 863 ◽  
pp. 407-453 ◽  
Author(s):  
Sicong Wu ◽  
Kenneth T. Christensen ◽  
Carlos Pantano

Direct numerical simulations (DNS) of turbulent channel flow over rough surfaces, formed from hexagonally packed arrays of hemispheres on both walls, were performed at friction Reynolds numbers $Re_{\unicode[STIX]{x1D70F}}=200$, $400$ and $600$. The inner normalized roughness height $k^{+}=20$ was maintained for all Reynolds numbers, meaning all flows were classified as transitionally rough. The spacing between hemispheres was varied within $d/k=2$–$4$. The statistical properties of the rough-wall flows were contrasted against a complementary smooth-wall DNS at $Re_{\unicode[STIX]{x1D70F}}=400$ and literature data at $Re_{\unicode[STIX]{x1D70F}}=2003$ revealing strong modifications of the near-wall turbulence, although the outer-layer structure was found to be qualitatively consistent with smooth-wall flow. Amplitude modulation (AM) analysis was used to explore the degree of interaction between the flow in the roughness sublayer and that of the outer layer utilizing all velocity components. This analysis revealed stronger modulation effects, compared to smooth-wall flow, on the near-wall small-scale fluctuations by the larger-scale structures residing in the outer layer irrespective of roughness arrangement and Reynolds number. A predictive inner–outer model based on these interactions, and exploiting principal component analysis (PCA), was developed to predict the statistics of higher-order moments of all velocity fluctuations, thus addressing modelling of anisotropic effects introduced by roughness. The results show excellent agreement between the predicted near-wall statistics up to fourth-order moments compared to the original statistics from the DNS, which highlights the utility of the PCA-enhanced AM model in generating physics-based predictions in both smooth- and rough-wall turbulence.


Sign in / Sign up

Export Citation Format

Share Document