NUMERICAL SIMULATION OF STABILITY OF A SUPERSONIC NEAR-WALL FLOW PAST ROUNDED COMPRESSION CORNER

Author(s):  
Andrey V. Novikov ◽  
Alexander V. Fedorov
AIAA Journal ◽  
1992 ◽  
Vol 30 (4) ◽  
pp. 890-896 ◽  
Author(s):  
Doyle D. Knight ◽  
C. C. Horstman ◽  
Seymour Bogdonoff

2000 ◽  
Author(s):  
Yoshiatsu Oki ◽  
Takeshi Sakata ◽  
Naoki Uchiyama ◽  
Takeshi Kaiden ◽  
Takeshi Andoh

2010 ◽  
Vol 31 (8) ◽  
pp. 1521-1528 ◽  
Author(s):  
L. Goubergrits ◽  
B. Thamsen ◽  
A. Berthe ◽  
J. Poethke ◽  
U. Kertzscher ◽  
...  

2016 ◽  
Vol 796 ◽  
pp. 257-284 ◽  
Author(s):  
Christian J. Kähler ◽  
Sven Scharnowski ◽  
Christian Cierpka

The understanding and accurate prediction of turbulent flow separation on smooth surfaces is still a challenging task because the separation and the reattachment locations are not fixed in space and time. Consequently, reliable experimental data are essential for the validation of numerical flow simulations and the characterization and analysis of the complex flow physics. However, the uncertainty of the existing near-wall flow measurements make a precise analysis of the near-wall flow features, such as separation/reattachment locations and other predicted near-wall flow features which are under debate, often impossible. Therefore, the periodic hill experiment at TU Munich (ERCOFTAC test case 81) was repeated using high resolution particle image velocimetry and particle tracking velocimetry. The results confirm the strong effect of the spatial resolution on the near-wall flow statistics. Furthermore, it is shown that statistically stable values of the turbulent flow variables can only be obtained for averaging times which are challenging to realize with highly resolved large eddy simulation and direct numerical simulation techniques. Additionally, the analysis implies that regions of correlated velocity fluctuations with rather uniform streamwise momentum exist in the flow. Their size in the mean flow direction can be larger than the hill spacing. The possible impact of the correlated turbulent motion on the wake region is discussed, as this interaction might be important for the understanding and control of the flow separation dynamics on smooth bodies.


2000 ◽  
Author(s):  
Li Wenzhong ◽  
B. C. Khoo ◽  
Xu Diao

Abstract The present paper is to determine the correction of hot-wire measurements when it is used to measure the shear flows region very close to the non-conducting wall. By numerical simulation of the Navier-Stokes and energy equations using the control volume method, we found that reasonably deployed grid distribution could largely reduce the computational domain size (for a typical Reynolds number for hot-wire near-wall measurements 4.0×10−3∼1.2, the domain boundary placing 650 diameters from the cylinder in front, rear and top is fair enough for accurate simulation, other than the domain boundary which places the 2000 diameters from the cylinder in front and top, and 3000 diameters from the cylinder in rear), and obtain the similar accuracy results for the correction of hot-wire measurements in the near-wall region. Numerical simulation results also show that, only taking the εf,εw (the maximum difference between the respective values of stream function and vorticity on successive iterations) as the criterion for convergence without judge to convergence of the temperature field seems not enough to obtain a convergent simulation result. This may be the possible reason which caused the discrepancy between the simulation results for hot-wire correction when using hot wire to measure the shear flows very close to the non-conducting wall.


Sign in / Sign up

Export Citation Format

Share Document