Direct numerical simulation of natural convection in a square cavity with uniform heat fluxes at the vertical sides: Flow structure and transition

Author(s):  
Ioannis Kouroudis ◽  
Panagiotis Saliakellis ◽  
Stergios G. Yiantsios
2020 ◽  
Vol 01 (01) ◽  
pp. 23-27
Author(s):  
Mohammad Ilias Inam

The effect of angle of rotation on laminar natural convection inside the square cavity have been observed in this research. It was assumed that left and right walls heated isothermally, whereas other two walls act as adiabatic. This problem was solved by assuming 2-D and by Direct Numerical Simulation (DNS) method using ANSYS Fluent 16.0. A series of DNS simulation were carried out for different inclination angle (𝜃 = 0°~90°) of the cavity at Ra = 103 & 104. It was observed that at average Nusselt number increase up to some value of angle of inclination after that it decrease though this variation is not significant.


Author(s):  
Fakhreddine S. Oueslati ◽  
Rachid Bennacer ◽  
Habib Sammouda ◽  
Ali Belghith

The natural convection is studied in a cavity witch the lower half is filled with a porous media that is saturated with a first fluid (liquid), and the upper is filled with a second fluid (gas). The horizontal borders are heated and cooled by uniform heat fluxes and vertical ones are adiabatic. The formulation of the problem is based on the Darcy-Brinkman model. The density variation is taken into account by the Boussinesq approximation. The system of the coupled equations is resolved by the classic finite volume method. The numerical results show that the variation of the conductivity of the porous media influences strongly the flow structure and the heat transfer as well as in upper that in the lower zones. The effect of conductivity is conditioned by the porosity which plays a very significant roll on the heat transfer. The structures of this flow show that this kind of problem with specific boundary conditions generates a complex flow structure of several contra-rotating two to two cells, in the upper half of the cavity.


2020 ◽  
Author(s):  
Oleg Druzhinin

<p>The objective of the present study is to investigate sensible and latent heat transfer mediated by evaporating saline droplets in a turbulent air flow over a waved water surface by performing direct numerical simulation. Equations of the air-flow velocity, temperature and humidity are solved simultaneously with the two-way-coupled equations of individual droplets coordinates and velocities, temperatures and masses. Two different cases of air and water surface temperatures,T<sub>a</sub> = 27 <sup>0</sup>C, T<sub>s</sub> = 28 <sup>0</sup>C,  and T<sub>a</sub> = -10 <sup>0</sup>C, T<sub>s</sub> = 0 <sup>0</sup>C, are considered and conditionally termed as "tropical cyclone" (TC) and "polar low"  (PL) conditions, respectively. Droplets-mediated sensible and latent heat fluxes, Q<sub>S</sub> and Q<sub>L</sub>, are integrated along individual droplets Lagrangian trajectories and evaluated as distributions over droplet diameter at injection, d, and also obtained as Eulerian, ensemble-averaged fields. The results show that under TC-conditions, the sensible heat flux from droplets to air is negative whereas the latent heat flux is positive, and thus droplets cool and moisturize the carrier air. On the other hand, under PL-conditions, Q<sub>S</sub> and Q<sub>L</sub>  are both positive, and Q<sub>L</sub> – contribution is significantly reduced as compared to Q<sub>S</sub> - contribution. Thus in this case, droplets warm up the air. In both cases, the droplet-mediated enthalpy flux, Q<sub>S</sub><sub> </sub>+ Q<sub>L </sub>, is positive, vanishes for sufficiently small droplets (with diameters d ≤ 150 μm) and further increases with d. The results also show that the net fluxes are reduced with increasing wave slope.</p><p>This work is supported by the Ministry of Education and Science of the Russian Federation (Task No. 0030-2019-0020). Numerical algorithms were developed under the support of RFBR (Nos. 18-05-60299, 18-55-50005, 18-05-00265, 20-05-00322). Postprocessing was performed under the support of the Russian Science Foundation (No. 19-17-00209).</p>


Sign in / Sign up

Export Citation Format

Share Document