Effect of thermal buoyancy on flow and heat transfer around a permeable circular cylinder with internal heat generation

2018 ◽  
Vol 126 ◽  
pp. 1143-1163 ◽  
Author(s):  
Shimin Yu ◽  
Peng Yu ◽  
Tingting Tang
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
G. M. Pavithra ◽  
B. J. Gireesha

A numerical analysis has been carried out to describe the boundary layer flow and heat transfer of a dusty fluid over an exponentially stretching surface in the presence of viscous dissipation and internal heat generation/absorption. The governing partial differential equations are reduced to nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by Runge-Kutta-Fehlberg 45 method. The heat transfer analysis has been carried out for both PEST and PEHF cases. The numerical results are compared with the earlier study and found to be in excellent agreement. Some important features of the flow and heat transfer in terms of velocities and temperature distributions for different values of the governing parameters like fluid-particle interaction parameter, Prandtl number, Eckert number, Number density, heat source/sink parameter, and suction parameter which are of physical and engineering interests are analyzed, discussed, and presented through tables and graphs.


2019 ◽  
Vol 29 (4) ◽  
pp. 1403-1431 ◽  
Author(s):  
Mohammad Sadegh Dehghani ◽  
Davood Toghraie ◽  
Babak Mehmandoust

Purpose The purpose of this study is numerical simulation of magnetohydrodynamics (MHD) water–Al2O3 nanofluid mixed convection in a grooved channel with internal heat generation in solid cylinders. Simulations were carried out at Reynolds numbers 50 ≤ Re ≤ 100, Hartmann numbers 0 ≤ Ha ≤ 15, Grashof numbers 5,000 ≤ Gr ≤ 10−4 and volume fraction 0 ≤ φ ≤ 0.04. The effect of Reynolds number and the influence of magnetic field and pressure drop on convective heat transfer coefficient were studied in different volume fractions of nanoparticles at different Reynolds numbers. Design/methodology/approach The results show that average Nusselt number increases by increasing Reynolds and Hartman numbers. Also, when Hartman number increases, velocity profile becomes asymmetric. Pressure distribution shows that magnetic field applies Lorentz force at opposite direction of the flow, which causes asymmetric distribution of pressure. As a result, pressure in the upper half of the cylinder is higher than the lower half. Finally, velocity and temperature contours along the channel for different Hartmann numbers, volume fraction 3 per cent, Re = 50 and 100 and Gr = 10,000, are presented. Findings The effect of Reynolds number and the influence of magnetic field and pressure drop on convective heat transfer coefficient were studied in different volume fractions of nanoparticles at different Reynolds numbers. Originality/value Effect of MHD on the flow and heat transfer characteristics of Water–Al2O3 nanofluid in a grooved channel with internal heat generation in solid cylinders.


Sign in / Sign up

Export Citation Format

Share Document