Analytical solutions of fluid flow and heat transfer in a partial porous channel with stress jump and continuity interface conditions using LTNE model

2019 ◽  
Vol 128 ◽  
pp. 1280-1295 ◽  
Author(s):  
Qi Li ◽  
Pengfei Hu
2003 ◽  
Author(s):  
Tien-Chien Jen ◽  
Tuan-Zhou Yan ◽  
S. H. Chan

A three-dimensional computational model is developed to analyze fluid flow in a semi-porous channel. In order to understand the developing fluid flow and heat transfer process inside the semi-porous channels, the conventional Navier-Stokes equations for gas channel, and volume-averaged Navier-Stokes equations for porous media layer are adopted individually in this study. Conservation of mass, momentum and energy equations are solved numerically in a coupled gas and porous media domain in a channel using the vorticity-velocity method with power law scheme. Detailed development of axial velocity, secondary flow and temperature fields at various axial positions in the entrance region are presented. The friction factor and Nusselt number are presented as a function of axial position, and the effects of the size of porous media inside semi-porous channel are also analyzed in the present study.


2016 ◽  
Vol 33 (3) ◽  
pp. 395-404 ◽  
Author(s):  
S. Srinivas ◽  
A. Vijayalakshmi ◽  
A. Subramanyam Reddy

AbstractThe present study investigates the flow and heat transfer characteristics of blood carrying gold nanoparticles in a porous channel with moving/stationary walls in the presence of thermal radiation. Blood is considered as Newtonian fluid which is the base fluid and gold (Au) as nanoparticles. The governing equations are transformed into system of ordinary differential equations by using similarity transformations. The analytical solutions are obtained for the flow variables by employing homotopy analysis method (HAM). The analytical solutions are compared with the numerical solutions which are obtained by shooting technique along with Runge-Kutta scheme. It was noticed that there is a good agreement between analytical and numerical results. The influence of various parameters on velocity, temperature and heat transfer rate of gold-blood nanofluid has been discussed in detail. The temperature of the nanofluid increases with increasing the nanoparticle volume fraction. The heat transfer rate at the top wall increases with increasing nanoparticle volume fraction while it decreases for a given increase in radiation parameter.


2015 ◽  
Vol 9 (3) ◽  
pp. 242 ◽  
Author(s):  
Efstathios Kaloudis ◽  
Dimitris Siachos ◽  
Konstantinos Stefanos Nikas

Sign in / Sign up

Export Citation Format

Share Document