Local end-wall heat transfer enhancement by jet impingement on a short pin-fin

2019 ◽  
Vol 128 ◽  
pp. 1033-1047 ◽  
Author(s):  
S. Schekman ◽  
M.D. Atkins ◽  
T. Kim
2021 ◽  
Author(s):  
Jingtian Duan ◽  
Ke Zhang ◽  
Jin Xu ◽  
Jiang Lei ◽  
Junmei Wu

Abstract Particle Image Velocimetry (PIV) was used to measure the flow field of staggered square pin-fin array in a wide rectangle channel (AR = 4). The experiment was conducted at two Reynolds number, 10000 and 20000, based on the hydraulic diameter and bulk velocity of the channel. The distribution of flow field properties was compared with that of Nu to analysis the key flow physics driving heat transfer enhancement in channel with square pin fin. The Nusselt number was achieved through temperature measurement using thermochromic liquid crystal in the same geometry setup. Results were compared with those for circular pin fin to study the effect of geometry on flow physics driving heat transfer enhancement. It was found that the wake length of square pin fin is longer than that of circular pin fin, which indicated flow around square pin fin requires longer distance to develop. Compared to circular pin fin, small scale disturbances in the shear layer of square pin fin show its contribution to local end wall heat transfer enhancement. Large motions benefit end wall heat transfer more effectively at lower Re. Small scale unsteadiness contributes more to heat transfer augment as flow develops or Reynolds number increases while large scale motions get weaker.


Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 25
Author(s):  
Iris Gerken ◽  
Thomas Wetzel ◽  
Jürgen J. Brandner

Micro heat exchangers have been revealed to be efficient devices for improved heat transfer due to short heat transfer distances and increased surface-to-volume ratios. Further augmentation of the heat transfer behaviour within microstructured devices can be achieved with heat transfer enhancement techniques, and more precisely for this study, with passive enhancement techniques. Pin fin geometries influence the flow path and, therefore, were chosen as the option for further improvement of the heat transfer performance. The augmentation of heat transfer with micro heat exchangers was performed with the consideration of an improved heat transfer behaviour, and with additional pressure losses due to the change of flow path (pin fin geometries). To capture the impact of the heat transfer, as well as the impact of additional pressure losses, an assessment method should be considered. The overall exergy loss method can be applied to micro heat exchangers, and serves as a simple assessment for characterization. Experimental investigations with micro heat exchanger structures were performed to evaluate the assessment method and its importance. The heat transfer enhancement was experimentally investigated with microstructured pin fin geometries to understand the impact on pressure loss behaviour with air.


2017 ◽  
Vol 21 (1 Part A) ◽  
pp. 279-288 ◽  
Author(s):  
Shuxia Qiu ◽  
Peng Xu ◽  
Liping Geng ◽  
Arun Mujumdar ◽  
Zhouting Jiang ◽  
...  

Air jet impingement is one of the effective cooling techniques employed in micro-electronic industry. To enhance the heat transfer performance, a cooling system with air jet impingement on a finned heat sink is evaluated via the computational fluid dynamics method. A two-dimensional confined slot air impinging on a finned flat plate is modeled. The numerical model is validated by comparison of the computed Nusselt number distribution on the impingement target with published experimental results. The flow characteristics and heat transfer performance of jet impingement on both of smooth and finned heat sinks are compared. It is observed that jet impingement over finned target plate improves the cooling performance significantly. A dimensionless heat transfer enhancement factor is introduced to quantify the effect of jet flow Reynolds number on the finned surface. The effect of rectangular fin dimensions on impingement heat transfer rate is discussed in order to optimize the cooling system. Also, the computed flow and thermal fields of the air impingement system are examined to explore the physical mechanisms for heat transfer enhancement.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 813 ◽  
Author(s):  
Parkpoom Sriromreun ◽  
Paranee Sriromreun

This research was aimed at studying the numerical and experimental characteristics of the air flow impinging on a dimpled surface. Heat transfer enhancement between a hot surface and the air is supposed to be obtained from a dimple effect. In the experiment, 15 types of test plate were investigated at different distances between the jet and test plate (B), dimple diameter (d) and dimple distance (Er and Eθ). The testing fluid was air presented in an impinging jet flowing at Re = 1500 to 14,600. A comparison of the heat transfer coefficient was performed between the jet impingement on the dimpled surface and the flat plate. The velocity vector and the temperature contour showed the different air flow characteristics from different test plates. The highest thermal enhancement factor (TEF) was observed under the conditions of B = 2 d, d = 1 cm, Er= 2 d, Eθ = 1.5 d and Re = 1500. This TEF was obtained from the dimpled surface and was 5.5 times higher than that observed in the flat plate.


Sign in / Sign up

Export Citation Format

Share Document