HEAT TRANSFER ENHANCEMENT WITH A SELF-OSCILLATING JET IMPINGEMENT NOZZLE

Author(s):  
P. S. Chinnock ◽  
R. H. Page
2017 ◽  
Vol 21 (1 Part A) ◽  
pp. 279-288 ◽  
Author(s):  
Shuxia Qiu ◽  
Peng Xu ◽  
Liping Geng ◽  
Arun Mujumdar ◽  
Zhouting Jiang ◽  
...  

Air jet impingement is one of the effective cooling techniques employed in micro-electronic industry. To enhance the heat transfer performance, a cooling system with air jet impingement on a finned heat sink is evaluated via the computational fluid dynamics method. A two-dimensional confined slot air impinging on a finned flat plate is modeled. The numerical model is validated by comparison of the computed Nusselt number distribution on the impingement target with published experimental results. The flow characteristics and heat transfer performance of jet impingement on both of smooth and finned heat sinks are compared. It is observed that jet impingement over finned target plate improves the cooling performance significantly. A dimensionless heat transfer enhancement factor is introduced to quantify the effect of jet flow Reynolds number on the finned surface. The effect of rectangular fin dimensions on impingement heat transfer rate is discussed in order to optimize the cooling system. Also, the computed flow and thermal fields of the air impingement system are examined to explore the physical mechanisms for heat transfer enhancement.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 813 ◽  
Author(s):  
Parkpoom Sriromreun ◽  
Paranee Sriromreun

This research was aimed at studying the numerical and experimental characteristics of the air flow impinging on a dimpled surface. Heat transfer enhancement between a hot surface and the air is supposed to be obtained from a dimple effect. In the experiment, 15 types of test plate were investigated at different distances between the jet and test plate (B), dimple diameter (d) and dimple distance (Er and Eθ). The testing fluid was air presented in an impinging jet flowing at Re = 1500 to 14,600. A comparison of the heat transfer coefficient was performed between the jet impingement on the dimpled surface and the flat plate. The velocity vector and the temperature contour showed the different air flow characteristics from different test plates. The highest thermal enhancement factor (TEF) was observed under the conditions of B = 2 d, d = 1 cm, Er= 2 d, Eθ = 1.5 d and Re = 1500. This TEF was obtained from the dimpled surface and was 5.5 times higher than that observed in the flat plate.


Author(s):  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath Ekkad

High-porosity metal foams are known for providing high heat transfer rates, as they provide a significant increase in wetted surface area as well as highly tortuous flow paths resulting in enhanced mixing. Further, jet impingement offers high convective cooling, particularly at the jet footprint areas on the target surface due to flow stagnation. In this study, high-porosity thin metal foams were subjected to array jet impingement, for a special crossflow scheme. High porosity (92.65%), high pore density (40 pores per inch (ppi)), and thin foams (3 mm) have been used. In order to reduce the pumping power requirements imposed by full metal foam design, two striped metal foam configurations were also investigated. For that, the jets were arranged in 3 × 6 array (x/dj = 3.42, y/dj = 2), such that the crossflow is dominantly sideways. Steady-state heat transfer experiments have been conducted for varying jet-to-target plate distance z/dj = 0.75, 2, and 4 for Reynolds numbers ranging from 3000 to 12,000. The baseline case was jet impingement onto a smooth target surface. Enhancement in heat transfer due to impingement onto thin metal foams has been evaluated against the pumping power penalty. For the case of z/dj = 0.75 with the base surface fully covered with metal foam, an average heat transfer enhancement of 2.42 times was observed for a concomitant pressure drop penalty of 1.67 times over the flow range tested.


2006 ◽  
Vol 2006.81 (0) ◽  
pp. _8-3_
Author(s):  
Masanori KUBO ◽  
Kenichiro TAKEISHI ◽  
Yutaka ODA ◽  
Ryuta ITO

Author(s):  
Xianchang Li ◽  
J. Leo Gaddis ◽  
Ting Wang

Internal mist/steam blade cooling technology has been considered for the future generation of Advanced Turbine Systems (ATS). Fine water droplets about 5 μm were carried by steam through a single slot jet onto a concave heated target surface in a confined channel to simulate inner surface cooling at the leading edge of a turbine blade. Experiments covered Reynolds numbers from 7,500 to 22,000 and heat fluxes from 3 to 21 kW/m2. The general level of heat transfer coefficient is, within experimental uncertainty, the same as the flat surface at comparable conditions. The experimental results indicate that the cooling is enhanced significantly near the stagnation point by the mist, decreasing downstream. Unlike impingement onto a flat plate the enhancement continues at all points downstream. Similar to the results of the flat surface, the heat transfer enhancement declines at higher heat fluxes. Up to 200% heat transfer enhancement at the stagnation point was achieved by injecting approximately 0.5% of mist.


Sign in / Sign up

Export Citation Format

Share Document