Modified surfaces to enhance vertical falling film heat transfer – An experimental and numerical study

Author(s):  
Anders Åkesjö ◽  
Mathias Gourdon ◽  
Lennart Vamling ◽  
Fredrik Innings ◽  
Srdjan Sasic
Author(s):  
Chuang-Yao Zhao ◽  
Wen-Tao Ji ◽  
Ya-Ling He ◽  
Ying-Jie Zhong ◽  
Wen-Quan Tao

2012 ◽  
Vol 204-208 ◽  
pp. 4305-4314
Author(s):  
Jing Jing Zhang ◽  
Dan Dan Zhao ◽  
Lu Chun Wan ◽  
Bao Huai Zhang ◽  
Ya Ping Chen

A mathematical model of heat and mass transfer process in plate falling film absorber with wire-meshed fins was developed. The model could predict temperature and concentration distribution as well as the solution side heat transfer coefficient and the absorption rate. The results verify that heat and mass transfer performance of the plate falling film absorber with wire-meshed fins is better than the past absorber. Compared with the plate falling film absorber without fins, heat transfer coefficient of the absorber in this article increases 1.06 times and the absorption rate increases 2.32 times.


Author(s):  
Binglu Ruan ◽  
Anthony M. Jacobi

The thermal conductivity and viscosity of water-based and ethylene-glycol-based multiwall carbon nanotube (MWCNT) suspensions are measured for MWCNT volume concentrations up to 0.24%. The thermal conductivity is found to increase up to 8.6% and 9.3% for water-based and ethylene-glycol-based nanofluids, respectively. The viscosity of the nanofluids increases compared to that of their base fluids, with larger increases for the ethylene-glycol-based nanofluids. Intertube falling-film heat transfer characteristics of these nanofluids are measured and compared to data for the base fluids. The heat transfer coefficient of the water-based nanofluids decreases at low MWCNT concentrations but increases as the concentration increases. The heat transfer coefficient of the ethylene-glycol-based nanofluids decreases with an increase in MWCNT concentration, with a maximum deviation of 30%.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Binglu Ruan ◽  
Anthony M. Jacobi

Horizontal-tube falling-film heat transfer characteristics of aqueous aluminum oxide nanofluids at concentrations of 0 vol %, 0.05 vol %(0.20 wt %), 0.5 vol %(1.96 wt %), 1 vol %(3.86 wt %) (with and without sodium dodecylbenzene sulfonate), and 2 vol %(7.51 wt %) are investigated and compared with predictions developed for conventional fluids. The thermophysical properties of the nanofluids, including thermal conductivity, kinematic viscosity, and surface tension, are reported, as is the mode transition behavior of the nanofluids. The experimental results for heat transfer are in good agreement with predictions for falling-film flow and no unusual Nu enhancement was observed in the present studies. Additionally, a 20% mode transitional Reynolds number increase was recorded for transitions between sheets and jets and jet-droplet mode to droplet mode. Although the findings with water-alumina nanofluids are not encouraging with respect to heat transfer, the results extend nanofluid data to a new type of flow and may help improve our understanding of nanofluid behavior. Moreover, this work provides a basis for further work on falling-film nanofluids.


Sign in / Sign up

Export Citation Format

Share Document