Numerical study of the falling film wettability and heat transfer on the inclined plates with different corrugated structures

Author(s):  
Zhihua Wan ◽  
Yanzhong Li
2012 ◽  
Vol 204-208 ◽  
pp. 4305-4314
Author(s):  
Jing Jing Zhang ◽  
Dan Dan Zhao ◽  
Lu Chun Wan ◽  
Bao Huai Zhang ◽  
Ya Ping Chen

A mathematical model of heat and mass transfer process in plate falling film absorber with wire-meshed fins was developed. The model could predict temperature and concentration distribution as well as the solution side heat transfer coefficient and the absorption rate. The results verify that heat and mass transfer performance of the plate falling film absorber with wire-meshed fins is better than the past absorber. Compared with the plate falling film absorber without fins, heat transfer coefficient of the absorber in this article increases 1.06 times and the absorption rate increases 2.32 times.


Author(s):  
Anders Åkesjö ◽  
Mathias Gourdon ◽  
Lennart Vamling ◽  
Fredrik Innings ◽  
Srdjan Sasic

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
D. Balaji ◽  
R. Velraj ◽  
M. V. Ramana Murthy

Abstract This paper discusses about the effect of tube geometry and liquid feeder height on the heat transfer performance of falling film evaporation over the horizontal heated plain tubes. To investigate this, a two-dimensional computational fluid dynamics (CFD) model was developed, compared, and validated with published data available in the literature. A numerical simulation was carried out for varying liquid load, tube diameter, liquid feeder height, and corresponding changes in the heat transfer co-efficient (HTC), and mass transfer rate was recorded and analyzed. An attempt was also made to measure the thickness of the film around the tubes from the simulation model. Mechanisms that control the factors such as HTC, film thickness, and mass transfer were numerically investigated and discussed in this work. Numerical results indicated that low value of liquid film thickness appears approximately at the angular position of the range between 90 deg and 125 deg. Also the numerical investigation revealed that liquid film thickness decreases and HTC and mass transfer rate increases with the increase of feeder height. No remarkable change in film thickness was observed with increase in the tube diameter. This numerical study also proved that the prediction of thermally developed boundary region on the circumference of the tube could be possible in terms of mass transfer rate. It was also observed from the numerical study that the highest mass transfer rate takes place between the angle 135–165 deg near to the bottom of the tube.


2021 ◽  
Author(s):  
Jayakumar Arjun ◽  
A. Mani

Abstract A novel non-intrusive technique based on air-coupled ultrasonic transducer was used to study the hydrodynamic behaviour of falling film over a metal foam layered horizontal tube. Copper foam having a porosity of 90.5%, brazed over a copper tube of 25.4 mm diameter was used in this study. Falling film thickness distribution in the circumferential direction and the dynamic characteristics of falling film were studied in the falling film Reynolds number range of 356 to 715, and at a tube spacing of 5 mm and 15 mm. The falling film characteristics over metal foam layered horizontal tube were compared with that over a plain horizontal tube surface. Heat transfer studies of falling film over metal foam layered tube were studied in an evaporator of a multi-effect desalination system by experiment. It was observed that the falling film heat transfer coefficient was enhanced 2.7 times by the application of metal foam over the plain horizontal tube. The measurements obtained from hydrodynamic and heat transfer studies were compared with the predictions made by a computational model and were found to be in good agreement. Metal foam properties required for the computational model were obtained using a micro-computed tomography based study.


Author(s):  
Chuang-Yao Zhao ◽  
Wen-Tao Ji ◽  
Ya-Ling He ◽  
Ying-Jie Zhong ◽  
Wen-Quan Tao

Author(s):  
Anders Åkesjö ◽  
Mathias Gourdon ◽  
Lennart Vamling ◽  
Fredrik Innings ◽  
Srdjan Sasic

Sign in / Sign up

Export Citation Format

Share Document