Molecular dynamics simulations on the heat and mass transfer of hypercrosslinked shell structure of phase change nanocapsules as thermal energy storage materials

Author(s):  
Xinjian Liu ◽  
Zhonghao Rao
2015 ◽  
Vol 830-831 ◽  
pp. 505-508 ◽  
Author(s):  
R. Sudheer ◽  
K. Narayan Prabhu

In recent years phase change materials have emerged to be ideal energy storage materials for their higher energy density over sensible heat storing materials. Use of phase change materials (PCM) have been successfully implemented at lower temperature applications with various organic compounds. On the other hand, high temperature applications have been solely dominated by various salts, their eutectics and mixtures as phase change materials. This work discusses the suitability of metals and alloys for thermal energy storage applications as the phase change material. Metals offer superior thermal conductivities with considerable energy density compared to salts. Here, two alloys namely, Sn-0.3Ag-0.7Cu (SAC) solidifying over 212-224°C and ZA8 (Zn-8%Al) solidifying over 378-405°C have been studied. Thermal analysis of PCMs using Computer Aided Cooling Curve Analysis (CA-CCA) and DSC technique were performed to predict the solidification path. In addition to this, Newtonian technique was employed to estimate the latent heat of fusion for these phase change materials. Cooling rate curves and Fraction Solid curves offered a better insight into their ability to receive and discharge heat over the concerned temperature range.


Author(s):  
Song Mengjie ◽  
Liao Liyuan ◽  
Niu Fuxin ◽  
Mao Ning ◽  
Liu Shengchun ◽  
...  

Phase change materials (PCMs) are widely applied in recent decades due to their good thermal performance in energy systems. Their applications are mainly limited by the phase change temperature and latent heat. Many publications are reported around the characteristic improvement of binary organic PCMs. The thermal stability study on organic binary PCMs used in thermal energy storage applications becomes fundamental and meaningful. In this study, thermal stability of three types of organic binary PCMs was experimentally investigated, which are frequently used in building and industry applications. To qualitatively investigate the stability of composite PCMs, differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FT-IR) spectra testing of samples were also conducted. Experimental results showed that the selected composite PCMs, capric acid (CA), and myristic acid (MA), had the best thermal performances, with its phase change temperature unchanged and heat of fusion decreased only 8.88 J/g, or 4.55%, after 2000 thermal cycles. Furthermore, quality ratio of required PCMs as the variation of operation duration was analyzed to quantitatively prepare the materials. The PCMs can successfully operate about 3125 times when prepared as 1.20 times of its calculated value by starting fusion heat. Conclusions of this research work can also be used for guiding the selection and preparation of other energy storage materials.


2012 ◽  
Vol 602-604 ◽  
pp. 1086-1089
Author(s):  
Qi Song Shi ◽  
Kui Long Liu

The myristic acid/silicon dioxide composite materials were prepared by sol-gel methods. The myristic acid was used as the phase change material for thermal energy storage, with the SiO2 acting as the supporting material. The structural analysis of these form-stable myristic acid /SiO2 composite phase change materials was carried out using Fourier transformation infrared spectroscope (FT-IR).The microstructure of the form-stable composite phase change materials was observed by a scanning electronic microscope (SEM). The thermal properties was investigated by a differential scanning calorimeter (DSC).The SEM results showed that the myristic acid was well dispersed in the porous network of SiO2. And the new nanocomposite material has favorable thermal storage capacity and can be applied to solar energy storage, industrial waste heat, recovery of waste heat and as civilian structural materials.


2021 ◽  
Author(s):  
Zhaohe WANG ◽  
Yanghua CHEN

To solve the issues of flowing and leaking of myristic acid (MA) as phase change energy storage material in practical application, a novel microencapsulated composite phase change energy storage material was prepared by sol-gel method using myristic acid (MA) as core material and titanium dioxide (TiO2) as shell material. The chemical structure, crystal structure, micromorphology, phase change characteristics and thermal stability of phase change microencapsulated energy storage materials were characterized by using Fourier transform infrared spectrometer (FT-IR), X-ray diffraction analyzer (XRD), field emission scanning electron microscope (FE-SEM), differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA). The consequents illustrated that the ideal sample melted at 54.97 °C with the latent heat of 55.76 J/g and solidified at 49.85 °C with the latent heat of 54.55 J/g. In general, the prepared microencapsulated phase change materials possessed good thermal properties and thermal stabilities. It is predicted that the shape-stabilized MA/TiO2 composites have great potential for thermal energy storage.


Sign in / Sign up

Export Citation Format

Share Document