Laminar natural convection of yield stress fluids in annular spaces between concentric cylinders

2019 ◽  
Vol 138 ◽  
pp. 1188-1198 ◽  
Author(s):  
H. Masoumi ◽  
M.S. Aghighi ◽  
A. Ammar ◽  
A. Nourbakhsh
2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Şahin Yİğİt ◽  
Robert J. Poole ◽  
Nilanjan Chakraborty

The effects of inclination 180deg≥φ≥0deg on steady-state laminar natural convection of yield-stress fluids, modeled assuming a Bingham approach, have been numerically analyzed for nominal values of Rayleigh number Ra ranging from 103 to 105 in a square enclosure of infinite span lying horizontally at φ=0deg, then rotated about its axis for φ>0deg cases. It has been found that the mean Nusselt number Nu¯ increases with increasing values of Rayleigh number but Nu¯ values for yield-stress fluids are smaller than that obtained in the case of Newtonian fluids with the same nominal value of Rayleigh number Ra due to the weakening of convective transport. For large values of Bingham number Bn (i.e., nondimensional yield stress), the mean Nusselt number Nu¯ value settles to unity (Nu¯=1.0) as heat transfer takes place principally due to thermal conduction. The mean Nusselt number Nu¯ for both Newtonian and Bingham fluids decreases with increasing φ until reaching a local minimum at an angle φ* before rising with increasing φ until φ=90deg. For φ>90deg the mean Nusselt number Nu¯ decreases with increasing φ before assuming Nu¯=1.0 at φ=180deg for all values of Ra. The Bingham number above which Nu¯ becomes unity (denoted Bnmax) has been found to decrease with increasing φ until a local minimum is obtained at an angle φ* before rising with increasing φ until φ=90deg. However, Bnmax decreases monotonically with increasing φ for 90deg<φ<180deg. A correlation has been proposed in terms of φ, Ra, and Bn, which has been shown to satisfactorily capture Nu¯ obtained from simulation data for the range of Ra and φ considered here.


2019 ◽  
Vol 29 (8) ◽  
pp. 2792-2808 ◽  
Author(s):  
Behnam Rafiei ◽  
Hamed Masoumi ◽  
Mohammad Saeid Aghighi ◽  
Amine Ammar

Purpose The purpose of this paper is to analyze the effects of complex boundary conditions on natural convection of a yield stress fluid in a square enclosure heated from below (uniformly and non-uniformly) and symmetrically cooled from the sides. Design/methodology/approach The governing equations are solved numerically subject to continuous and discontinuous Dirichlet boundary conditions by Galerkin’s weighted residuals scheme of finite element method and using a non-uniform unstructured triangular grid. Findings Results show that the overall heat transfer from the heated wall decreases in the case of non-uniform heating for both Newtonian and yield stress fluids. It is found that the effect of yield stress on heat transfer is almost similar in both uniform and non-uniform heating cases. The yield stress has a stabilizing effect, reducing the convection intensity in both cases. Above a certain value of yield number Y, heat transfer is only due to conduction. It is found that a transition of different modes of stability may occur as Rayleigh number changes; this fact gives rise to a discontinuity in the variation of critical yield number. Originality/value Besides the new numerical method based on the finite element and using a non-uniform unstructured grid for analyzing natural convection of viscoplastic materials with complex boundary conditions, the originality of the present work concerns the treatment of the yield stress fluids under the influence of complex boundary conditions.


1986 ◽  
Vol 108 (4) ◽  
pp. 783-789 ◽  
Author(s):  
D. N. Mahony ◽  
R. Kumar ◽  
E. H. Bishop

A numerical finite difference investigation has been conducted to determine the effects of variable properties on the laminar natural convection of gases between horizontal isothermal concentric cylinders. Velocity profiles, temperature profiles, and heat transfer rates have been computed for diameter ratios of 1.5, 2.28, 2.6, and 5.0 and Rayleigh numbers based on gap width up to 1.8 × 105. The temperature difference ratio θo was varied from 0.2 to 3.0, and the range of validity of the Boussinesq approximation was determined to be θo = 0.2. A volume-weighted mean temperature was shown to be the most effective reference temperature to reduce the heat transfer data for each diameter ratio to a single curve of the form keq = C RaLn, for 0.2 ≤ θo ≤ 3.0 and RaL = 2.0 × 105.


2018 ◽  
Vol 387 ◽  
pp. 442-460 ◽  
Author(s):  
Girish N. ◽  
Oluwole Daniel Makinde ◽  
M. Sankar

The present study deals with the numerically investigation of developing laminar natural convection in the vertical double-passage porous annuli formed by three vertical concentric cylinders of which the middle cylinder is a thin and perfectly conductive known as baffle. In this analysis, two thermal conditions are considered namely, either inner or outer cylindrical wall is constantly heated while the opposite wall is insulated. An implicit finite difference technique is employed to solve the boundary layer equations in both the annular passages. The temperature profiles and velocity profiles in axial as well as radial directions have been presented for different values of Grashof number, Darcy number, baffle position and radius ratio. The results reveal that both physical and geometrical parameters have profound influence on the development of velocity and thermal fields as well as heat transfer rate.


AIChE Journal ◽  
2015 ◽  
Vol 62 (4) ◽  
pp. 1347-1355 ◽  
Author(s):  
Chong Li ◽  
Albert Magnin ◽  
Christel Métivier

Sign in / Sign up

Export Citation Format

Share Document