A molecular dynamics study of the effects of crystalline structure transition on the thermal conductivity of pentaerythritol as a solid-solid phase change material

Author(s):  
Biao Feng ◽  
Jing Tu ◽  
Ju-Wei Sun ◽  
Li-Wu Fan ◽  
Yi Zeng
2018 ◽  
Author(s):  
Ryohei Gotoh ◽  
Tsuyoshi Totani ◽  
Masashi Wakita ◽  
Harunori Nagata

2015 ◽  
Vol 52 (8) ◽  
pp. 617-624 ◽  
Author(s):  
Siyang Mu ◽  
Jing Guo ◽  
Chunfang Yu ◽  
Yuanfa Liu ◽  
Yumei Gong ◽  
...  

Author(s):  
Ayushman Singh ◽  
Srikanth Rangarajan ◽  
Leila Choobineh ◽  
Bahgat Sammakia

Abstract This work presents an approach to optimally designing a composite with thermal conductivity enhancers (TCEs) infiltrated with phase change material (PCM) based on figure of merit (FOM) for thermal management of portable electronic devices. The FOM defines the balance between effective thermal conductivity and energy storage capacity. In present study, TCEs are in the form of a honeycomb structure. TCEs are often used in conjunction with PCM to enhance the conductivity of the composite medium. Under constrained composite volume, the higher volume fraction of TCEs improves the effective thermal conductivity of the composite, while it reduces the amount of latent heat storage simultaneously. The present work arrives at the optimal design of composite for electronic cooling by maximizing the FOM to resolve the stated trade-off. In this study, the total volume of the composite and the interfacial heat transfer area between the PCM and TCE are constrained for all design points. A benchmarked two-dimensional direct CFD model was employed to investigate the thermal performance of the PCM and TCE composite. Furthermore, assuming conduction-dominated heat transfer in the composite, a simplified effective numerical model that solves the single energy equation with the effective properties of the PCM and TCE has been developed. The effective thermal conductivity of the composite is obtained by minimizing the error between the transient temperature gradient of direct and simplified model by iteratively varying the effective thermal conductivity. The FOM is maximized to find the optimal volume fraction for the present design.


Sign in / Sign up

Export Citation Format

Share Document