scholarly journals Materials-to-device design of hybrid metal-polymer heat exchanger tubes for low temperature waste heat recovery

Author(s):  
Manjunath C. Rajagopal ◽  
Ho Chan Chang ◽  
Timothy Man ◽  
Gowtham Kuntumalla ◽  
Yuquan Meng ◽  
...  
2016 ◽  
Vol 61 (17) ◽  
pp. 1858-1876 ◽  
Author(s):  
FeiLong WANG ◽  
SongZhen TANG ◽  
WenQuan TAO ◽  
YaLing HE ◽  
QinXin ZHAO

2019 ◽  
Author(s):  
Sakil Hossen ◽  
AKM M. Morshed ◽  
Amitav Tikadar ◽  
Azzam S. Salman ◽  
Titan C. Paul

2007 ◽  
Vol 2 (3) ◽  
pp. 86-95
Author(s):  
R. Sudhakaran ◽  
◽  
V. Sella Durai ◽  
T. Kannan ◽  
P.S. Sivasakthievel ◽  
...  

2017 ◽  
Vol 16 (5) ◽  
pp. 1107-1113 ◽  
Author(s):  
Andrei Burlacu ◽  
Constantin Doru Lazarescu ◽  
Adrian Alexandru Serbanoiu ◽  
Marinela Barbuta ◽  
Vasilica Ciocan ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 5223
Author(s):  
Miriam Benedetti ◽  
Daniele Dadi ◽  
Lorena Giordano ◽  
Vito Introna ◽  
Pasquale Eduardo Lapenna ◽  
...  

The recovery of waste heat is a fundamental means of achieving the ambitious medium- and long-term targets set by European and international directives. Despite the large availability of waste heat, especially at low temperatures (<250 °C), the implementation rate of heat recovery interventions is still low, mainly due to non-technical barriers. To overcome this limitation, this work aims to develop two distinct databases containing waste heat recovery case studies and technologies as a novel tool to enhance knowledge transfer in the industrial sector. Through an in-depth analysis of the scientific literature, the two databases’ structures were developed, defining fields and information to collect, and then a preliminary population was performed. Both databases were validated by interacting with companies which operate in the heat recovery technology market and which are possible users of the tools. Those proposed are the first example in the literature of databases completely focused on low-temperature waste heat recovery in the industrial sector and able to provide detailed information on heat exchange and the technologies used. The tools proposed are two key elements in supporting companies in all the phases of a heat recovery intervention: from identifying waste heat to choosing the best technology to be adopted.


2012 ◽  
Vol 204-208 ◽  
pp. 4229-4233 ◽  
Author(s):  
Fang Tian Sun ◽  
Na Wang ◽  
Yun Ze Fan ◽  
De Ying Li

Drain water at 35°C was directly discharged into sewer in most of barbershop with Electric water heater. Heat utilization efficiency is lower, and energy grade match between input and output is not appropriate in most of barbershops. Two waste heat recovery systems were presented according to the heat utilization characteristics of barbershops and principle of cascade utilization of energy. One was the waste heat recovery system by water-to-water heat exchanger (WHR-HE), and the other is the waste heat recovery system by water-to-water heat exchanger and high-temperature heat pump (WHR-CHEHP). The two heat recovery systems were analyzed by the first and second Laws of thermodynamic. The analyzed results show that the energy consumption can be reduced about 75% for HR-HE, and about 98% for WHR-CHEHP. Both WHR-HE and WHR-CHEHP are with better energy-saving effect and economic benefits.


Author(s):  
L. Lopera ◽  
C. Nieto ◽  
A. C. Escudero ◽  
C. A. Bustamante ◽  
M. C. Fernández

Sign in / Sign up

Export Citation Format

Share Document