Performance investigation of radial heat sink with circular base and perforated staggered fins

Author(s):  
Susmitha Sundar ◽  
Gihyun Song ◽  
Muhammad Zeeshan Zahir ◽  
J.S. Jayakumar ◽  
Se-Jin Yook
Keyword(s):  
2022 ◽  
Vol 171 ◽  
pp. 107187
Author(s):  
Gihyun Song ◽  
Eun-Seong Moon ◽  
Jeong-Jun Park ◽  
Sang-Min Song ◽  
Se-Jin Yook
Keyword(s):  
Pin Fins ◽  

Author(s):  
S. Manna ◽  
S. K. Ghosh ◽  
S. C. Haldar

Free convection from an upward facing radial heat sink with fins at an equal angular gap attached to an isothermal base has been investigated numerically. The governing equations in primitive variables were changed to vorticity-vector potential formulation, and an in-house code was developed using finite difference technique. To close the computational domain, two pseudo boundaries were considered. Length, height, and number of fins strongly influence the rate of heat transfer while the fin thickness has a marginal role. As the fin length increases, the rate of heat transfer first increases and then remains almost unaffected. However, the active length of the fins depends on the strength of buoyancy. Heat transfer continuously increases with fin height but with diminishing effect. Adding more number of fins has two opposing effects. It provides more surface area for convection, but at the same time, the induced air is unable to reach the interior of the heat sink making the inner portion of the fins inoperative. As a result of these two opposing influences, heat transfer increases in the beginning and then decreases as more fins are added. This article suggests various fin parameters to achieve maximum cooling. In addition, one can estimate the rate of cooling to be achieved by any radial heat sink.


2011 ◽  
Vol 54 (11-12) ◽  
pp. 2499-2505 ◽  
Author(s):  
Seung-Hwan Yu ◽  
Kwan-Soo Lee ◽  
Se-Jin Yook

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3958
Author(s):  
Jianhua Xiang ◽  
Zeyu Liu ◽  
Chunliang Zhang ◽  
Chao Zhou ◽  
Conggui Chen

A phase change heat sink has higher heat transfer efficiency compared to a traditional metal solid heat sink, and is thus more preferred for the heat dissipation of high-power light-emitting diodes (LEDs) with very high heat flux. The boiling structure at the evaporation surface is the biggest factor that affects heat sink resistance. It is necessary to investigate the plastic deformation law during the machining process of boiling structures. In this study, a novel phase change radial heat sink was developed for high-power LED heat dissipation. First, a working principle and a fabrication process for the heat sink were introduced. Subsequently, to achieve an excellent heat dissipation performance, the machining process of boiling structures was numerically simulated and investigated. To be specific, plastic deformation generated during the formation was analyzed, and key parameters related to the morphology of the boiling structures were discussed including feeding angles and machining depths. Moreover, the finite element (FE) simulation results were compared with those of experiments. Last but not least, the heat transfer performance of the fabricated heat sink was tested. Results showed that the developed heat sink was well suited for a high-power LED application.


Sign in / Sign up

Export Citation Format

Share Document