Water flow boiling in a partially modified microgap with shortened micro pin fins

Author(s):  
Liaofei Yin ◽  
Peixue Jiang ◽  
Ruina Xu ◽  
Haowei Hu
Author(s):  
Santosh Krishnamurthy ◽  
Yoav Peles

Flow boiling of HFE 7000 on micro pin fins entrenched inside microchannels was experimentally studied for G = 350 kg/m2s to G = 827 kg/m2s and wall heat fluxes from 10 W/cm2 to 110 W/cm2. Bubbly, multiple, and wavy-annular flow patterns were observed. The interaction of the bubble with the pin fins during nucleate boiling is detailed.


Author(s):  
Daxiang Deng ◽  
Wei Wan ◽  
Yu Qin ◽  
Jingrui Zhang ◽  
Xuyang Chu

Author(s):  
Zhuo Cui

This paper presents the effects of heat dissipation performance of pin fins with different heat sink structures. The heat dissipation performance of two types of pin fin arrays heat sink are compared through measuring their heat resistance and the average Nusselt number in different cooling water flow. The temperature of cpu chip is monitored to determine the temperature is in the normal range of working temperature. The cooling water flow is in the range of 0.02L/s to 0.15L/s. It’s found that the increase of pin fins in the corner region effectively reduce the temperature of heat sink and cpu chip. The new type of pin fin arrays increase convection heat transfer coefficient and reduce heat resistance of heat sink.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Fayao Xu ◽  
Huiying Wu ◽  
Zhenyu Liu

In this paper, the flow patterns during water flow boiling instability in pin-fin microchannels were experimentally studied. Three types of pin-fin arrays (in-line/circular pin-fins, staggered/circular pin-fins, and staggered/square pin-fins) were used in the study. The flow instability started to occur as the outlet water reached the saturation temperature. Before the unstable boiling, a wider range of stable boiling existed in the pin-fin microchannels compared to that in the plain microchannels. Two flow instability modes for the temperature and pressure oscillations, which were long-period/large-amplitude mode and short-period/small-amplitude mode, were identified. The temperature variation during the oscillation period of the long-period/large-amplitude mode can be divided into two stages: increasing stage and decreasing stage. In the increasing stage, bubbly flow, vapor-slug flow, stratified flow, and wispy flow occurred sequentially with time for the in-line pin-fin microchannels; liquid single-phase flow, aforementioned four kinds of two-phase flow patterns, and vapor single-phase flow occurred sequentially with time for the staggered pin-fin microchannel. The flow pattern transitions in the decreasing stage were the inverse of those in the increasing stage for both in-line and staggered pin-fin microchannels. For the short-period/small-amplitude oscillation mode, only the wispy flow occurred. With the increase of heat flux, the wispy flow and the vapor single-phase flow occupied more and more time ratio during an oscillation period in the in-line and staggered pin-fin microchannels.


Sign in / Sign up

Export Citation Format

Share Document