Flow Patterns During Flow Boiling Instability in Silicon-Based Pin-Fin Microchannels

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Fayao Xu ◽  
Huiying Wu ◽  
Zhenyu Liu

In this paper, the flow patterns during water flow boiling instability in pin-fin microchannels were experimentally studied. Three types of pin-fin arrays (in-line/circular pin-fins, staggered/circular pin-fins, and staggered/square pin-fins) were used in the study. The flow instability started to occur as the outlet water reached the saturation temperature. Before the unstable boiling, a wider range of stable boiling existed in the pin-fin microchannels compared to that in the plain microchannels. Two flow instability modes for the temperature and pressure oscillations, which were long-period/large-amplitude mode and short-period/small-amplitude mode, were identified. The temperature variation during the oscillation period of the long-period/large-amplitude mode can be divided into two stages: increasing stage and decreasing stage. In the increasing stage, bubbly flow, vapor-slug flow, stratified flow, and wispy flow occurred sequentially with time for the in-line pin-fin microchannels; liquid single-phase flow, aforementioned four kinds of two-phase flow patterns, and vapor single-phase flow occurred sequentially with time for the staggered pin-fin microchannel. The flow pattern transitions in the decreasing stage were the inverse of those in the increasing stage for both in-line and staggered pin-fin microchannels. For the short-period/small-amplitude oscillation mode, only the wispy flow occurred. With the increase of heat flux, the wispy flow and the vapor single-phase flow occupied more and more time ratio during an oscillation period in the in-line and staggered pin-fin microchannels.

Author(s):  
Fayao Xu ◽  
Huiying Wu ◽  
Zhenyu Liu

Flow patterns during boiling instability of deionized water across silicon-based microchannels with inner pin-fin arrays have been studied experimentally. Three types of microchannels with different pin-fin structures and a hydraulic diameter of 210 μm were used. During the unstable flow boiling, two types of instability modes of temperature and pressure oscillations occurred: long-period/large-amplitude oscillation mode and short-period/small-amplitude oscillation mode. There were increasing and decreasing stages of the temperature measurement during a period of long-period/large-amplitude oscillation mode. According to visualization observation, in the increasing stage of temperature oscillation for the in-line pin-fin microchannel, four two-phase flow patterns, including bubbly flow, vapor-slug flow, stratified flow, and stream flow, occurred sequentially with time; for the staggered pin-fin microchannels, the four two-phase flow patterns, together with single liquid-phase flow and single vapor-phase flow occurred sequentially with time. The flow pattern transitions were inverse between the increasing and decreasing stages of temperature measurement. Under the short-period/small-amplitude oscillation mode, only the stream flow occurred. With the increase of heat flux, the stream flow and the single vapor-phase flow occupied more and more time ratio during an oscillation period in the in-line and staggered pin-fin microchannels, respectively.


2008 ◽  
Vol 130 (12) ◽  
Author(s):  
Weilin Qu ◽  
Abel Siu-Ho

This is Paper I of a two-part study concerning thermal and hydrodynamic characteristics of liquid single-phase flow in an array of micro-pin-fins. This paper reports the heat transfer results of the study. An array of 1950 staggered square micro-pin-fins with 200×200 μm2 cross-section by 670 μm height were fabricated into a copper test section. De-ionized water was used as the cooling liquid. Two coolant inlet temperatures of 30°C and 60°C and six maximum mass velocities for each inlet temperature ranging from 183 to 420 kg/m2 s were tested. The corresponding inlet Reynolds number ranged from 45.9 to 179.6. General characteristics of average and local heat transfer were described. Six previous conventional long and intermediate pin-fin correlations and two micro-pin-fin correlations were examined and were found to overpredict the average Nusselt number data. Two new heat transfer correlations were proposed for the average heat transfer based on the present data, in which the average Nusselt number is correlated with the average Reynolds number by power law. Values of the exponent m of the Reynolds number for the two new correlations are fairly close to those for the two previous micro-pin-fin correlations but substantially higher than those for the previous conventional pin-fin correlations, indicating a stronger dependence of the Nusselt number on the Reynolds number in micro-pin-fin arrays. The correlations developed for the average Nusselt number can adequately predict the local Nusselt number data.


Author(s):  
Weilin Qu

This study concerns thermal and hydrodynamic characteristics of water single-phase flow and flow boiling in a micro-pin-fin array. An array of 1950 staggered square micro-pin-fins with a 200×200 μm2 cross-section by a 670 μm height were fabricated into a copper heat sink test section. Two inlet temperatures of 30 °C and 60 °C, and six maximum mass velocities for each inlet temperature, ranging from 183 to 420 kg/m2s, were tested. The corresponding inlet Reynolds number ranged from 45.9 to 179.6. General characteristics of single-phase flow and flow boiling were described. Predictive tools were proposed for single-phase heat transfer coefficient and pressure drop. Unique features of flow boiling heat transfer in the micro-pin-fin array were identified. The classic Lockhart-Martinelli correlation incorporating a single-phase micro-pin-fin friction factor correlation and the laminar liquid–laminar vapor combination assumption was used to predict two-phase pressure drop in the micro-pin-fin array. The predictions agreed well with the experimental data.


Author(s):  
Christopher A. Konishi ◽  
Ruey Hwu ◽  
Weilin Qu ◽  
Frank E. Pfefferkorn

This study investigates the hydraulic performance of a copper micro-pin-fin array subjected to water liquid single-phase flow conditions. The test section contains an array of 1950 staggered square micro-pin-fins with 200 micron × 200 micron cross-section by 670 micron height. The ratios of longitudinal pitch and transverse pitch to pin-fin equivalent diameter are equal to 2. Seven water inlet temperatures from 22°C to 80°C, and seventeen maximum mass velocities for each inlet temperature, ranging from 181 to 1649 kg/m2s, were tested. The test module was well insulated to maintain adiabatic conditions. Comparison of predictions of eleven existing friction factor correlations with the experimental data show relatively large discrepancies. The experimental study was complemented with a numerical analysis of single-phase flow in the micro-pin-fin array. Numerical results show excellent agreement with experimental data for Reynolds numbers below 700.


Author(s):  
Dae W. Kim ◽  
Emil Rahim ◽  
Avram Bar-Cohen ◽  
Bongtae Han

The thermofluid characteristics of a chip-scale microgap cooler, including single-phase flow of water and FC-72 and flow boiling of FC-72, are explored. Heat transfer and pressure drop results for single phase water are used to validate a detailed numerical model and, together with the convective FC-72 data, establish a baseline for microgap cooler performance. Experimental results for single phase water and FC-72 flowing in 120 μm, 260 μm and 600 μm microgap coolers, 31mm wide by 34mm long, at velocities of 0.1 – 2 m/s are reported. “Pseudo-boiling” driven by dissolved gas and flow boiling of FC-72 are found to provide significant enhancement in heat transfer relative to theoretical single phase values.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Zan Wu ◽  
Bengt Sundén

Experimental single-phase, condensation, and evaporation (flow boiling) pressure drop data from the literature and our previous studies were collected to evaluate previous frictional pressure drop correlations for horizontal microfin tubes of different geometries. The modified Ravigururajan and Bergles correlation, by adopting the Churchill model to calculate the smooth-tube friction factor and by using the hydraulic diameter in the Reynolds number, can predict single-phase turbulent frictional pressure drop data relatively well. Eleven pressure drop correlations were evaluated by the collected database for condensation and evaporation. Correlations originally developed for condensation and evaporation in smooth tubes can be suitable for microfin tubes if the friction factors in the correlations were calculated by the Churchill model to include microfin effects. The three most accurate correlations were recommended for condensation and evaporation in microfin tubes. The Cavallini et al. correlation and the modified Friedel correlation can give good predictions for both condensation and evaporation. However, some inconsistencies were found, even for the recommended correlations.


2021 ◽  
Vol 25 (6) ◽  
pp. 74-81
Author(s):  
R. Shakir ◽  

The cooling equipment project must use electrical and electronic equipment because of the need to remove the heat generated by this equipment. Investigation; R-113 single-phase flow heat transfer; (50 x 50 mm2) cross-section and (5 mm) height; used in a series of stagger-square micro-pin fins. Inlet temperature of (25 °C); (6) Mass flow rate at this temperature, the recommended range is (0. 0025 -0.01 kg/sec) the inlet and outlet pressures are approximately (1-1.10 bar), and through (25- 225 watts) applied heat. The iterative process is used to obtain the heat flow characteristics, for example; the single-phase heat transfer coefficient is completely laminar flow developing, in this flow, guesses the wall temperature, guess the fluid temperature. The possible mechanism of heat transfer has been discussed


Sign in / Sign up

Export Citation Format

Share Document