scholarly journals On the scaling of convective boiling heat transfer coefficient

Author(s):  
Subhanker Paul ◽  
Maria Fernandino ◽  
Carlos A. Dorao
Author(s):  
Hirofumi Arima ◽  
Nobuhiko Matsuo ◽  
Keita Shigyou ◽  
Akio Okamoto ◽  
Yasuyuki Ikegami

In this experimental study, we investigate the enhancement of heat transfer in ammonia on a new plate evaporator whose surface is configured with microgrooves. The microgrooves have a depth of 30 μm and a width of 200 μm. The local boiling heat transfer coefficients were measured on the evaporator. To compare the heat transfer characteristics of the evaporator, the local boiling heat transfer coefficient on a flat surface and on two microgrooved surfaces—one vertical and one horizontal to the direction of the ammonia flow—were measured at different ranges of mass flux (2–7.5 kg/m2s), heat flux (10–20 kW/m2), and saturation pressure (0.7–0.9 MPa). The results show that the local boiling heat transfer coefficient of the horizontal and vertical microgrooved surfaces was larger than that of a flat surface. In particular, the horizontal microgrooved surface had the best heat transfer coefficient.


Author(s):  
Naresh Poudel ◽  
Musa Acar ◽  
Thanh Tran ◽  
Jiajun Xu

In this paper, both experimental and numerical studies have been performed on the convective boiling heat transfer of the Ethanol-in-Polyalphaolefin (PAO) Nanoemulsions inside a heat exchanger of twelve 1mm diameter mini-channels that was subjected to a uniform heat flux at its outer surface. The heat transfer characteristics and the pressure drop of the Ethanol/PAO nanoemulsion was studied experimentally, meanwhile, the volume of fraction (VOF) model with Pressure-Velocity coupling based Semi Implicit Method for Pressure Linked Equations (SIMPLE) iterative algorithm is employed to simulate the same experimental conditions numeircally. The results reveal that the convective boiling heat transfer coefficient of the nanoemulsion can be greatly enhanced upon the nucleation of ethanol nanodroplets inside, in which a maximum 50% enhancement compared to pure PAO base fluid can be achieved under current test conditions. However, the thermal conductivity and viscosity of the nanoemulsions has an insignificant effect on convective boiling heat transfer coefficient based on the experimental results. The ANSYS FLUENT simulation results also agree well with the experimental data. The Ethanol-in-PAO nanoemulsion could function as a good alternative conventional working fluid in two phase heat transfer applications.


Sign in / Sign up

Export Citation Format

Share Document