Investigating a novel Ag/ZnO based hybrid nanofluid for sustainable machining of inconel 718 under nanofluid based minimum quantity lubrication

2021 ◽  
Vol 66 ◽  
pp. 313-324
Author(s):  
Surendra D. Barewar ◽  
Aman Kotwani ◽  
Sandesh S. Chougule ◽  
Deepak Rajendra Unune
Author(s):  
Anup A Junankar ◽  
Yashpal Yashpal ◽  
Jayant K Purohit

A minimum quantity lubrication system using biodegradable cutting fluids has facilitated the excellent machining performance and is observed as more sustainable. In the view of enhancement of machining performance, the utilization of nanofluids with a minimum quantity lubrication system as a cutting fluid delivered noteworthy outcomes. For the present experimental investigation, the monotype nanofluids (copper oxide and zinc oxide) and a hybrid nanofluid (copper oxide/zinc oxide) were synthesized by using a two-step method. Scanning electron microscopy and energy dispersive X-ray analysis were performed to characterize the synthesized nanoparticles. A vegetable oil was utilized as a base fluid and three types of nanofluids were prepared by the addition of a surfactant (butenol). Also, ultrasonication has been performed to avoid the agglomeration of nanoparticles into the base fluid. The thermal conductivity evaluation of prepared nanofluids was carried out by using a hot wire method. The effects of three nanofluids were investigated by considering three machining input variables (cutting speed, feed rate and depth of cut) on response variables (surface roughness and cutting zone temperature) during bearing steel turning under nanofluid minimum quantity lubrication cooling conditions. The multi-objective optimization was performed by using grey relational analysis and found that the hybrid nanofluid (copper oxide/zinc oxide) was noted as the highly effective cooling condition as equated to copper oxide and zinc oxide monotype nanofluid. The hybrid nanofluid (copper oxide/zinc oxide) shows a 65% and 60% reduction in surface roughness on comparing with copper oxide and zinc oxide nanofluids, respectively. Also, the minimization of cutting zone temperature was observed under the hybrid nanofluid (copper oxide/zinc oxide) by 11% and 13% on equating with copper oxide and zinc oxide nanofluids, respectively.


2018 ◽  
Vol 2 (3) ◽  
pp. 50 ◽  
Author(s):  
Hussien Hegab ◽  
Hossam Kishawy

Difficult-to-cut materials have been widely employed in many engineering applications, including automotive and aeronautical designs because of their effective properties. However, other characteristics; for example, high hardness and low thermal conductivity has negatively affected the induced surface quality and tool life, and consequently the overall machinability of such materials. Inconel 718, is widely used in many industries including aerospace; however, the high temperature generated during machining is negatively affecting its machinability. Flood cooling is a commonly used remedy to improve machinability problems; however, government regulation has called for further alternatives to reduce the environmental and health impacts of flood cooling. This work aimed to investigate the influence of dispersed multi-wall carbon nanotubes (MWCNTs) and aluminum oxide (Al2O3) gamma nanoparticles, on enhancing the minimum quantity lubrication (MQL) technique cooling and lubrication capabilities during turning of Inconel 718. Machining tests were conducted, the generated surfaces were examined, and the energy consumption data were recorded. The study was conducted under different design variables including cutting speed, percentage of added nano-additives (wt.%), and feed velocity. The study revealed that the nano-fluids usage, generally improved the machining performance when cutting Inconel 718. In addition, it was shown that the nanotubes additives provided better improvements than Al2O3 nanoparticles.


Procedia CIRP ◽  
2016 ◽  
Vol 40 ◽  
pp. 138-143 ◽  
Author(s):  
Uma Maheshwera Reddy Paturi ◽  
Yesu Ratnam Maddu ◽  
Ramalinga Reddy Maruri ◽  
Suresh Kumar Reddy Narala

Sign in / Sign up

Export Citation Format

Share Document