Flow and heat transfer in a rotating channel with impingement cooling and film extraction

Author(s):  
Hongwu Deng ◽  
Zishuo Wang ◽  
Jiasen Wang ◽  
Hua Li
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4327
Author(s):  
Min-Seob Shin ◽  
Santhosh Senguttuvan ◽  
Sung-Min Kim

The present study experimentally and numerically investigates the effect of channel height on the flow and heat transfer characteristics of a channel impingement cooling configuration for various jet Reynolds numbers in the range of 2000–8600. A single array consisting of eleven jets with 0.8 mm diameter injects water into the channel with 2 mm width at four different channel heights (3, 4, 5, and 6 mm). The average heat transfer coefficients at the target surface are measured by maintaining a temperature difference between the jet exit and the target surface in the range of 15–17 °C for each channel height. The experimental results show the average heat transfer coefficient at the target surface increases with the jet Reynolds number and decreases with the channel height. An average Nusselt number correlation is developed based on 85 experimentally measured data points with a mean absolute error of less than 4.31%. The numerical simulation accurately predicts the overall heat transfer rate within 10% error. The numerical results are analyzed to investigate the flow structure and its effect on the local heat transfer characteristics. The present study advances the primary understanding of the flow and heat transfer characteristics of the channel impingement cooling configuration with liquid jets.


Author(s):  
Ahmada Omar Ali ◽  
Oluwole Daniel Makinde ◽  
Yaw Nkansah-Gyekye

Purpose – The purpose of this paper is to investigate numerically the unsteady MHD Couette flow and heat transfer of viscous, incompressible and electrically conducting nanofluids between two parallel plates in a rotating channel. Design/methodology/approach – The nanofluid is set in motion by the combined action of moving upper plate, Coriolis force and the constant pressure gradient. The channel rotates in unison about an axis normal to the plates. The nonlinear governing equations for velocity and heat transfer are obtained and solved numerically using semi-discretization, shooting and collocation (bvp4c) techniques together with Runge-Kutta Fehlberg integration scheme. Findings – Results show that both magnetic field and rotation rate demonstrate significant effect on velocity and heat transfer profiles in the system with Cu-water nanofluid demonstrating the highest velocity and heat transfer efficiency. These numerical results are in excellent agreements with the results obtained by other methods. Practical implications – This paper provides a very useful source of information for researchers on the subject of hydromagnetic nanofluid flow in rotating systems. Originality/value – Couette flow of nanofluid in the presence of applied magnetic field in a rotating channel is investigated.


Author(s):  
J. Liu ◽  
A. Weaver ◽  
T. I-P. Shih ◽  
J. Klinger ◽  
B. Heneveld ◽  
...  

The trailing-edge region of turbine airfoils is difficult to cool. In this study, CFD conjugate analysis based on the shear-stress transport (SST) turbulence model is used to study the flow and heat transfer in a triple-impingement cooling configuration. Parameters studied include the pressure drop across the configuration (1, 2, 3, 4, and 5 bars), and the heat transfer coefficient on the hot-gas side (2,000, 4,000, and 6,000 W/m2-K). In all cases with conjugate analysis, the temperature of the coolant at the inlet of the cooling passage is 673 K, the external hot-gas temperature is 1,755 K, and the static pressure at the exit of cooling passage is 25 bars. Simulations were also performed in which the temperature of the cooling-passage wall is kept constant at 1,173 K. Results are generated to show the nature of the flow induced by the triple impingement and how that flow affects heat transfer to the turbine material.


2001 ◽  
Vol 7 (3) ◽  
pp. 209-222
Author(s):  
Frank K. T. Lin ◽  
G. J. Hwang ◽  
S.-C. Wong ◽  
C. Y. Soong

This work is concerned with numerical computation of turbulent flow and heat transfer in experimental models of a radially rotating channel used for turbine blade cooling. Reynolds-averaged Navier-Stokes and energy equations with a two-layer turbulence model are employed as the computational model of the flow and temperature fields. The computations are carried out by the software package of “CFX-TASCflow”. Heat loss from the channel walls through heat conduction is considered. Results at various rotational conditions are obtained and compared with the baseline stationary cases. The influences of the channel rotation, through-flow, wall conduction and the channel extension on flow and heat transfer characteristics are explored. Comparisons of the present predictions and available experimental data are also presented.


Author(s):  
B. V. N. Ramakumar ◽  
D. S. Joshi ◽  
Murari Sridhar ◽  
Jong S. Liu ◽  
Daniel C. Crites

Impingement cooling offers very high heat transfer coefficients. Flow field, involved in impingement cooling is dominated by stagnation zone, transition zone and developing zone. Understanding of complex flow phenomenon and its effects on heat transfer characteristics is useful for efficient designing of impingement channels. Computational fluid dynamics (CFD) has emerged as a powerful tool for the analysis of flow and heat transfer systems. Honeywell has been investigating the use of CFD to determine the characteristics of various complex turbine blade cooling heat transfer augmentation methods such as impingement. The objective of this study is to develop CFD methodology which is suitable for computational investigation of flow and heat transfer analysis of impingement cooling through validation. Single row of circular jets impinging on concave (curved) surface has been considered for this study. The validation was accomplished with the test results of Bunker and Metzger [10] and with the correlations of Chupp et al. [7]. The parameters which are varied in this study include jet Reynolds number (Re2B = 6750–10200), target plate distance to jet diameter ratio (Z/d = 3 and 4), and target surface sharpness (i.e. radius ratio, r* = 0.2, 0.4 and 1) the simulations are performed under steady state conditions. Predicted results are compared for local endwall heat transfer results along the curve length of the mid span target wall. Flow field results obtained at different locations are presented to understand the heat transfer behavior.


Sign in / Sign up

Export Citation Format

Share Document