scholarly journals Analysis of counter flow injection technique at elevated enthalpy hypersonic reacting flows

Author(s):  
Ajay Patil ◽  
Shailendra Kumar ◽  
Vinayak Kulkarni
2018 ◽  
Author(s):  
Vishnu Prakash K ◽  
Siddesh Desai ◽  
Hrishikesh Gadgil ◽  
Vinayak Kulkarni

1992 ◽  
Vol 261 (1-2) ◽  
pp. 287-294 ◽  
Author(s):  
R.T. Edwards ◽  
I.D. McKelvie ◽  
P.C. Ferrett ◽  
B.T. Hart ◽  
J.B. Bapat ◽  
...  

1996 ◽  
Vol 42 (12) ◽  
pp. 2021-2027 ◽  
Author(s):  
Z Yaping ◽  
Y Dongxing ◽  
C Jixiang ◽  
L Tianshiu ◽  
C Huiqin

Abstract A flow-injection technique involving on-line catalytic digestion and spectrophotometric detection has been developed for the determination of iodine in urine. After urine samples are digested by KMnO4-K2Cr2O7-H2SO4 solution, the iodine in the urine catalyzes the reaction of As(III) with Ce(IV). The remaining Ce(IV) is then reacted with brucine and the product is detected with a spectrophotometer at 480 nm. With this technique, we obtained a detection limit for urinary iodine of 0.039 mumol/L, and the linear range was 0.039-7.88 mumol/L with a CV < 3%. Analytical recovery ranged between 92% and 104% (mean 99%). The sampling frequency of the flow-injection technique was 70/h. We applied the method to measure the iodine concentration in a freeze-dried urine reference sample and in collected urine samples, and compared the results with those obtained by the accepted alkaline ashing technique. The proposed technique has the advantages of being simple, rapid, precise, accurate, and sensitive. It can be used to assess iodine-deficient populations as well as those receiving treatment.


Talanta ◽  
2018 ◽  
Vol 186 ◽  
pp. 215-220 ◽  
Author(s):  
Marcin Wieczorek ◽  
Marek Dębosz ◽  
Paweł Świt ◽  
Aneta Woźniakiewicz ◽  
Paweł Kościelniak

Sign in / Sign up

Export Citation Format

Share Document