Calculation and analysis of excess adsorption and surface tension of aqueous surfactant solutions under pool boiling conditions

Author(s):  
Zi-Cheng Hu ◽  
Xiao-Yuan Liu ◽  
Qian Wang
1996 ◽  
Vol 118 (1) ◽  
pp. 103-109 ◽  
Author(s):  
W. R. McGillis ◽  
V. P. Carey

The Marangoni effect on the critical heat flux (CHF) condition in pool boiling of binary mixtures has been identified and its effect has been quantitatively estimated with a modified model derived from hydrodynamics. The physical process of CHF in binary mixtures, and models used to describe it, are examined in the light of recent experimental evidence, accurate mixture properties, and phase equilibrium revealing a correlation to surface tension gradients and volatility. A correlation is developed from a heuristic model including the additional liquid restoring force caused by surface tension gradients. The CHF condition was determined experimentally for saturated methanol/water, 2-propanol/water, and ethylene glycol/water mixtures, over the full range of concentrations, and compared to the model. The evidence in this study demonstrates that in a mixture with large differences in surface tension, there is an additional hydrodynamic restoring force affecting the CHF condition.


1991 ◽  
Vol 60 ◽  
pp. 235-261 ◽  
Author(s):  
C.D. Dushkin ◽  
I.B. Ivanov ◽  
P.A. Kralchevsky

Author(s):  
Birce Dikici ◽  
Matthew J. Lehman

Surface tension and solution evaporation of aqueous solutions of sodium lauryl sulfate (SLS), ECOSURF™ EH-14, and ECOSURF™ SA-9 under natural convection is examined through experimental methods. SLS is an anionic surfactant while EH-14 and SA-9 are environmentally-friendly nonionic surfactants. Surfactants are known to affect evaporation performance of solutions and are studied in relation to water loss prevention and heat dissipation. Surfactants could be useful under drought conditions which present challenges to water management on a yearly basis in arid areas of the world. Recent water scarcity in the greater Los Angeles area, south eastern Africa nations, eastern Australia and eastern Mediterranean countries has high cost of water loss by evaporation. Surfactants are studied as a potential method of suppressing evaporation in water reservoirs. Surfactants are also studied as performance enhancers for the working fluid of heat dissipation devices, such as pulsating heat pipes used for electronics cooling. Some surfactants have been shown to lower thermal resistances and friction pressure in such devices and thereby increase their efficiency. The static surface tensions of the aqueous-surfactant solutions are measured with surface tensiometer using Wilhelmy plate method. The surfactants are shown to lower surface tension significantly from pure water. The surface tension values found at the Critical Micelle Concentration are 33.8 mN/m for SLS, 30.3 mN/m for EH-14, and 30.0 mN/m for SA-9. All three surfactants reduced natural convection water loss over 5 days with SLS showing the greatest effect on evaporation rates. The maximum evaporation reduction by each surfactant from distilled water with no surfactants after 5 days is 26.1% for SLS, 20.8% for EH-14, and 18.4% for SA-9.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Ho Seon Ahn ◽  
Joonwon Kim ◽  
Moo Hwan Kim

Dynamic wetting behaviors of water droplet on the modified surface were investigated experimentally. Dynamic contact angles were measured as a characterization method to explain the extraordinary pool boiling critical heat flux (CHF) enhancement on the zirconium surface by anodic oxidation modification. The sample surface is rectangular zirconium alloy plates (20 × 25 × 0.7 mm), and 12 μl of deionized water droplets were fallen from 40 mm of height over the surface. Dynamic wetting movement of water on the surface showed different characteristics depending on static contact angle (49.3 deg–0 deg) and surface temperature (120 °C–280 °C). Compared with bare surface, wettable and spreading surface had no-receding contact angle jump and seemed stable evaporating meniscus of liquid droplet in dynamic wetting condition on hot surface. This phenomenon could be explained by the interaction between the evaporation recoil and the surface tension forces. The surface tension force increased by micro/nanostructure of the modified zirconium surface suppresses the vapor recoil force by evaporation which makes the water layer unstable on the heated surface. Thus, such increased surface force could sustain the water layer stable in pool boiling CHF condition so that the extraordinary CHF enhancement could be possible.


Sign in / Sign up

Export Citation Format

Share Document