The investigation of antibiotic residues, antibiotic resistance genes and antibiotic-resistant organisms in a drinking water reservoir system in Germany

Author(s):  
A.M. Voigt ◽  
P. Ciorba ◽  
M. Döhla ◽  
M. Exner ◽  
C. Felder ◽  
...  
Author(s):  
Ting Xu ◽  
Wanting Zhao ◽  
Xueping Guo ◽  
Hongchang Zhang ◽  
Shuangqing Hu ◽  
...  

Abstract Background Aquatic ecosystems are considered to be among the most important reservoirs of antibiotic resistance genes (ARGs). Drinking water sources were usually parts of lakes and rivers in Yangtze River Delta, among which Qingcaosha Reservoir is the largest river impoundment and benefit the population of more than 13 million for Shanghai city. In this study, we aimed at investigating the distribution of antibiotics and ARGs to characterize the pollution across various sites in Qingcaosha Reservoir in three seasons. Results Sulfamethoxazole, sulfamonomethoxine and penicillin G potassium salt were the dominant antibiotics and of high detection frequencies in this reservoir. Sulfonamide resistance genes ( sul1 and sul2 ) were the most prevalent and predominant genes. Higher total relative abundance of the ARGs were detected in the site closest to the inflow than those in other sites. Overall, the concentrations of antibiotics in May (spring) were relatively lower than November (autumn) and February (winter). Correlation analysis indicated sul1 , ermB and mphA had positive correlation with corresponding antibiotics in February and intI1 was also greatly positively correlated to sul1 , sul2 , ermB and mphA . Conclusion In conclusion, the antibiotics and ARGs were widespread in Qingcaosha Reservoir. Our result indicated that the drinking water reservoir might serve as gene reservoir for antibiotic resistance and mobile gene element intI1 can serve as a medium to contribute to the widespread of various ARGs. What is more, we considered that Reservoir could be served as a functional area contributing to the elimination of ARGs.


2020 ◽  
Author(s):  
Ting Xu ◽  
Wanting Zhao ◽  
Xueping Guo ◽  
Shuangqing Hu ◽  
Hongchang Zhang ◽  
...  

Abstract Background Aquatic ecosystems are considered to be among the most important reservoirs of antibiotic resistance genes (ARGs). Drinking water sources were usually parts of lakes and rivers in Yangtze River Delta, among which Qingcaosha Reservoir is the largest river impoundment and benefit the population of more than 13 million for Shanghai city. In this study, we aimed at investigating the distribution of antibiotics and ARGs to characterize the pollution across various sites in Qingcaosha Reservoir in three seasons.Results Sulfamethoxazole, sulfamonomethoxine and penicillin G potassium salt were the dominant antibiotics and of high detection frequencies in this reservoir. Sulfonamide resistance genes ( sul1 and sul2 ) were the most prevalent and predominant genes. Higher total relative abundance of the ARGs were detected in the site closest to the inflow than those in other sites. Overall, the concentrations of antibiotics in May (spring) were relatively lower than November (autumn) and February (winter). Correlation analysis indicated sul1 , ermB and mphA had positive correlation with corresponding antibiotics in February and intI1 was also greatly positively correlated to sul1 , sul2 , ermB and mphA .Conclusion In conclusion, the antibiotics and ARGs were widespread in Qingcaosha Reservoir. Our result indicated that the drinking water reservoir might serve as gene reservoir for antibiotic resistance and mobile gene element intI1 can serve as a medium to contribute to the widespread of various ARGs. What is more, we considered that Reservoir could be served as a functional area contributing to the elimination of ARGs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mykhailo Savin ◽  
Johannes Alexander ◽  
Gabriele Bierbaum ◽  
Jens Andre Hammerl ◽  
Norman Hembach ◽  
...  

AbstractSlaughterhouse wastewater is considered a reservoir for antibiotic-resistant bacteria and antibiotic residues, which are not sufficiently removed by conventional treatment processes. This study focuses on the occurrence of ESKAPE bacteria (Enterococcus spp., S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp.), ESBL (extended-spectrum β-lactamase)-producing E. coli, antibiotic resistance genes (ARGs) and antibiotic residues in wastewater from a poultry slaughterhouse. The efficacy of conventional and advanced treatments (i.e., ozonation) of the in-house wastewater treatment plant regarding their removal was also evaluated. Target culturable bacteria were detected only in the influent and effluent after conventional treatment. High abundances of genes (e.g., blaTEM, blaCTX-M-15, blaCTX-M-32, blaOXA-48, blaCMY and mcr-1) of up to 1.48 × 106 copies/100 mL were detected in raw influent. All of them were already significantly reduced by 1–4.2 log units after conventional treatment. Following ozonation, mcr-1 and blaCTX-M-32 were further reduced below the limit of detection. Antibiotic residues were detected in 55.6% (n = 10/18) of the wastewater samples. Despite the significant reduction through conventional and advanced treatments, effluents still exhibited high concentrations of some ARGs (e.g., sul1, ermB and blaOXA-48), ranging from 1.75 × 102 to 3.44 × 103 copies/100 mL. Thus, a combination of oxidative, adsorptive and membrane-based technologies should be considered.


Sign in / Sign up

Export Citation Format

Share Document