16S rRNA-targeted probes for specific detection of Thermoanaerobacterium spp., Thermoanaerobacterium thermosaccharolyticum, and Caldicellulosiruptor spp. by fluorescent in situ hybridization in biohydrogen producing systems

2008 ◽  
Vol 33 (21) ◽  
pp. 6082-6091 ◽  
Author(s):  
S OTHONG ◽  
P PRASERTSAN ◽  
D KARAKASHEV ◽  
I ANGELIDAKI
1999 ◽  
Vol 65 (4) ◽  
pp. 1746-1752 ◽  
Author(s):  
Cleber C. Ouverney ◽  
Jed A. Fuhrman

ABSTRACT We propose a novel method for studying the function of specific microbial groups in situ. Since natural microbial communities are dynamic both in composition and in activities, we argue that the microbial “black box” should not be regarded as homogeneous. Our technique breaks down this black box with group-specific fluorescent 16S rRNA probes and simultaneously determines 3H-substrate uptake by each of the subgroups present via microautoradiography (MAR). Total direct counting, fluorescent in situ hybridization, and MAR are combined on a single slide to determine (i) the percentages of different subgroups in a community, (ii) the percentage of total cells in a community that take up a radioactively labeled substance, and (iii) the distribution of uptake within each subgroup. The method was verified with pure cultures. In addition, in situ uptake by members of the α subdivision of the class Proteobacteria(α-Proteobacteria) and of the Cytophaga-Flavobacteriumgroup obtained off the California coast and labeled with fluorescent oligonucleotide probes for these subgroups showed that not only do these organisms account for a large portion of the picoplankton community in the sample examined (∼60% of the universal probe-labeled cells and ∼50% of the total direct counts), but they also are significant in the uptake of dissolved amino acids in situ. Nearly 90% of the total cells and 80% of the cells belonging to the α-Proteobacteria and Cytophaga-Flavobacterium groups were detectable as active organisms in amino acid uptake tests. We suggest a name for our triple-labeling technique, substrate-tracking autoradiographic fluorescent in situ hybridization (STARFISH), which should aid in the “dissection” of microbial communities by type and function.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 85-90 ◽  
Author(s):  
H. Daims ◽  
P.H. Nielsen ◽  
J.L. Nielsen ◽  
S. Juretschko ◽  
M. Wagner

The frequency and distribution of putatively nitrite-oxidizing, Nitrospira- like bacteria in nitrifying biofilms from two reactors receiving wastewater with different ammonia and salt concentrations were observed by fluorescent in situ hybridization. For this purpose, new 16S rRNA-directed oligonucleotide probes targeting the bacterial phylum Nitrospira and the three main lineages within this phylum were developed and evaluated. The diversity of Nitrospira-like bacteria in the reactors was additionally investigated by retrieval and comparative analysis of full 16S rRNA sequences from the biofilms. We found that, despite of the differences in the influent composition, Nitrospira-like bacteria form dominant populations in both reactors. In addition, first insights into the physiology of these still unculturable bacteria were obtained by the incubation of active biofilm samples with radioactively labeled substrates followed by the combined application of fluorescent in situ hybridization and microautoradiography. The results are discussed in consideration of the frequently observed dominance of Nitrospira-like bacteria in nitrifying bioreactors. Consequently, high priority should be assigned to future studies on the ecology and physiology of these organisms in order to increase our fundamental understanding of nitrogen cycling and to enable knowledge-driven future improvements of nitrifying wastewater treatment plants.


1998 ◽  
Vol 35 (2) ◽  
pp. 153-156 ◽  
Author(s):  
M. Boye ◽  
T. K. Jensen ◽  
K. Møller ◽  
T. D. Leser ◽  
S. E. Jorsal

Fluorescent in situ hybridization targeting 16S ribosomal RNA was used for specific detection of the obligate intracellular bacterium Lawsonia intracellularis in enterocytes from pigs affected by proliferative enteropathy. A specific oligonucleotide probe was designed and the specificity of the probe was determined by simultaneous comparison with indirect immunofluorescence assay for detection of L. intracellularis in formalin-fixed tissue samples from 15 pigs affected by porcine proliferative enteropathy. We used 10 tissue samples from pigs without proliferative mucosal changes as negative controls. The results showed that the oligonucleotide probe is specific for L. intracellularis and that fluorescent in situ hybridization targeting ribosomal RNA is a suitable and fast method for specific detection and histological recognition of L. intracellularis in formalin-fixed tissue.


2003 ◽  
Vol 69 (2) ◽  
pp. 1181-1186 ◽  
Author(s):  
Yolanda Moreno ◽  
Salut Botella ◽  
José Luis Alonso ◽  
María A. Ferrús ◽  
Manuel Hernández ◽  
...  

ABSTRACT The aim of this study was to evaluate PCR and fluorescent in situ hybridization (FISH) techniques for detecting Arcobacter and Campylobacter strains in river water and wastewater samples. Both 16S and 23S rRNA sequence data were used to design specific primers and oligonucleotide probes for PCR and FISH analyses, respectively. In order to assess the suitability of the methods, the assays were performed on naturally and artificially contaminated samples and compared with the isolation of cells on selective media. The detection range of PCR and FISH assays varied between 1 cell/ml (after enrichment) to 103 cells/ml (without enrichment). According to our results, both rRNA-based techniques have the potential to be used as quick and sensitive methods for detection of campylobacters in environmental samples.


2001 ◽  
Vol 120 (5) ◽  
pp. A706
Author(s):  
Laurens A. Van der Waaij ◽  
Hermie J.M. Harmsen ◽  
Mohsen Madjipour ◽  
Frans G.M. Kroese ◽  
Hendrik M. Van Dullemen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document