Development and use of fluorescent 16S rRNA-targeted probes for the specific detection of Methylophaga species by in situ hybridization in marine sediments

2003 ◽  
Vol 154 (7) ◽  
pp. 483-490 ◽  
Author(s):  
Monique Janvier ◽  
Béatrice Regnault ◽  
Patrick Grimont
1998 ◽  
Vol 64 (7) ◽  
pp. 2686-2690 ◽  
Author(s):  
Dorothee Grimm ◽  
Hilde Merkert ◽  
Wolfgang Ludwig ◽  
Karl-Heinz Schleifer ◽  
Jörg Hacker ◽  
...  

Based on comparative sequence analysis, we have designed an oligonucleotide probe complementary to a region of 16S rRNA ofLegionella pneumophila which allows the differentiation ofL. pneumophila from other Legionellaspecies without cultivation. The specificity of the new probe, LEGPNE1, was tested by in situ hybridization to a total of four serogroups of six strains of L. pneumophila, five differentLegionella spp. and three nonlegionella species as reference strains. Furthermore, L. pneumophilacells could be easily distinguished from Legionella micdadei and Pseudomonas aeruginosa cells by using in situ hybridization with probes LEGPNE1, LEG705, and EUB338 after infection of the protozoan Acanthamoeba castellanii.


2003 ◽  
Vol 69 (5) ◽  
pp. 2879-2883 ◽  
Author(s):  
Yanru Yang ◽  
Josef Zeyer

ABSTRACT Dehalococcoides ethenogenes is the only known cultivated organism capable of complete dehalogenation of tetrachloroethene (PCE) to ethene. The prevalence of Dehalococcoides species in the environment and their association with complete dehalogenation of chloroethenes suggest that they play an important role in natural attenuation of chloroethenes and are promising candidates for engineered bioremediation of these contaminants. Both natural attenuation and bioremediation require reliable and sensitive methods to monitor the presence, distribution, and fate of the organisms of interest. Here we report the development of 16S rRNA-targeted oligonucleotide probes for Dehalococcoides species. The two designed probes together encompass 28 sequences of 16S rRNA genes retrieved from the public database. Except D. ethenogenes and CBDB1, all the others are environmental clones obtained from sites contaminated with chlorinated ethenes. They are all closely related and form a unique cluster of Dehalococcoides species. In situ hybridization of probe Dhe1259t with D. ethenogenes strain 195 and two enrichment cultures demonstrated the applicability of the probe to monitoring the abundance of active Dehalococcoides species in these enrichment samples.


2001 ◽  
Vol 67 (1) ◽  
pp. 142-147 ◽  
Author(s):  
Henrik Stender ◽  
Adam J. Broomer ◽  
Kenneth Oliveira ◽  
Heather Perry-O'Keefe ◽  
Jens J. Hyldig-Nielsen ◽  
...  

ABSTRACT A new chemiluminescent in situ hybridization (CISH) method provides simultaneous detection, identification, and enumeration of culturableEscherichia coli cells in 100 ml of municipal water within one working day. Following filtration and 5 h of growth on tryptic soy agar at 35°C, individual microcolonies of E. coliwere detected directly on a 47-mm-diameter membrane filter using soybean peroxidase-labeled peptide nucleic acid (PNA) probes targeting a species-specific sequence in E. coli 16S rRNA. Within each microcolony, hybridized, peroxidase-labeled PNA probe and chemiluminescent substrate generated light which was subsequently captured on film. Thus, each spot of light represented one microcolony of E. coli. Following probe selection based on 16S ribosomal DNA (rDNA) sequence alignments and sample matrix interference, the sensitivity and specificity of the probe Eco16S07C were determined by dot hybridization to RNA of eight bacterial species. Only the rRNA of E. coli and Pseudomonas aeruginosa were detected by Eco16S07C with the latter mismatch hybridization being eliminated by a PNA blocker probe targetingP. aeruginosa 16S rRNA. The sensitivity and specificity for the detection of E. coli by PNA CISH were then determined using 8 E. coli strains and 17 other bacterial species, including closely related species. No bacterial strains other thanE. coli and Shigella spp. were detected, which is in accordance with 16S rDNA sequence information. Furthermore, the enumeration of microcolonies of E. coli represented by spots of light correlated 92 to 95% with visible colonies following overnight incubation. PNA CISH employs traditional membrane filtration and culturing techniques while providing the added sensitivity and specificity of PNA probes in order to yield faster and more definitive results.


1999 ◽  
Vol 65 (4) ◽  
pp. 1746-1752 ◽  
Author(s):  
Cleber C. Ouverney ◽  
Jed A. Fuhrman

ABSTRACT We propose a novel method for studying the function of specific microbial groups in situ. Since natural microbial communities are dynamic both in composition and in activities, we argue that the microbial “black box” should not be regarded as homogeneous. Our technique breaks down this black box with group-specific fluorescent 16S rRNA probes and simultaneously determines 3H-substrate uptake by each of the subgroups present via microautoradiography (MAR). Total direct counting, fluorescent in situ hybridization, and MAR are combined on a single slide to determine (i) the percentages of different subgroups in a community, (ii) the percentage of total cells in a community that take up a radioactively labeled substance, and (iii) the distribution of uptake within each subgroup. The method was verified with pure cultures. In addition, in situ uptake by members of the α subdivision of the class Proteobacteria(α-Proteobacteria) and of the Cytophaga-Flavobacteriumgroup obtained off the California coast and labeled with fluorescent oligonucleotide probes for these subgroups showed that not only do these organisms account for a large portion of the picoplankton community in the sample examined (∼60% of the universal probe-labeled cells and ∼50% of the total direct counts), but they also are significant in the uptake of dissolved amino acids in situ. Nearly 90% of the total cells and 80% of the cells belonging to the α-Proteobacteria and Cytophaga-Flavobacterium groups were detectable as active organisms in amino acid uptake tests. We suggest a name for our triple-labeling technique, substrate-tracking autoradiographic fluorescent in situ hybridization (STARFISH), which should aid in the “dissection” of microbial communities by type and function.


Sign in / Sign up

Export Citation Format

Share Document