Alumina supported Ni and Co catalysts modified by Y2O3 via different impregnation strategies: Comparative analysis on structural properties and catalytic performance in methane reforming with CO2

2016 ◽  
Vol 41 (33) ◽  
pp. 14732-14746 ◽  
Author(s):  
Baitao Li ◽  
Wenfeng Su ◽  
Xiaona Wang ◽  
Xiujun Wang
2020 ◽  
Vol 01 ◽  
Author(s):  
Bonamali Pal ◽  
Anila Monga ◽  
Aadil Bathla

Background:: Bimetallic nanocomposites have currently gained significant importance for enhanced catalytic applications relative to monometallic analogues. The synergistic interactions modified electronic and optical properties in the bimetallic (M1@M2) structural morphology e.g., core-shell /alloy nanostructures resulted in a better co-catalytic performance for TiO2 photocatalysis. Objective:: Hence, this article discusses the preparation, characterization, and co-catalytic activity of different bimetallic nanostructures namely, Cu@Zn, Pd@Au, Au@Ag, and Ag@Cu, etc. Method:: These bimetallic co-catalysts deposited on TiO2 possess the ability to absorb visible light due to surface plasmonic absorption and are also expected to display the new properties due to synergy between two distinct metals. As a result, they reveal the highest level of activity than the monometal deposited TiO2. Result:: Their optical absorption, emission, charge carrier dynamics, and surface structural morphology are explained for the improved photocatalytic activity of M1@M2 loaded TiO2 for the hydrogenation of certain organic compounds e.g., quinoline, crotonaldehyde, and 1,3-dinitrobenzene, etc. under UV/ visible light irradiation. Conclusion:: It revealed that the use of bimetallic core@shell co-catalyst for hydrogenation of important industrial organics by M1@M2-TiO2 nanocomposite demonstrates beneficial reactivity in many instances relative to conventional transition metal catalysts.


Catalysts ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 279 ◽  
Author(s):  
Benjamin Mutz ◽  
Andreas Gänzler ◽  
Maarten Nachtegaal ◽  
Oliver Müller ◽  
Ronald Frahm ◽  
...  

2020 ◽  
Author(s):  
Feng Yang ◽  
Haofei Zhao ◽  
Wu Wang ◽  
Qidong Liu ◽  
Xu Liu ◽  
...  

Abstract When carbon-containing species are involved in reactions catalyzed by transition metals at high temperature, the diffusion of carbon on/in catalysts dramatically influence the catalytic performance. Acquiring information on the carbon-diffusion-involved evolution of catalysts at atomic level is crucial for understanding the reaction mechanism yet also challenging. For the chemical vapor deposition process of single-walled carbon nanotubes (SWCNTs), we developed methodologies to record in-situ the near-surface structural and chemical evolution of Co catalysts with carbon permeation using an aberration-corrected environmental transmission electron microscope and the synchrotron X-ray absorption spectroscopy. The nucleation and growth of SWCNTs were linked with the partial carbonization of catalysts and the alternating dissolvement-precipitation of carbon in catalysts. The dynamics of carbon atoms in catalysts brings deeper insight into the growth mechanism of SWCNTs and also sheds light on inferring mechanisms of more reactions. The methodologies developed here will find broad applications in studying catalytic and other processes.


2021 ◽  
Vol 1016 ◽  
pp. 1417-1422
Author(s):  
Chao Sun ◽  
Jugoslav Krstic ◽  
Vojkan Radonjic ◽  
Miroslav Stankovic ◽  
Patrick da Costa

This study is aimed to investigate the effect of Ni precursor salts on the properties (textural, phase-structural, reducibility, and basicity), and catalytic performance of diatomite supported Ni-Mg catalyst in methanation of CO2. The NiMg/D-X catalysts derived from various nickel salts (X = S-sulfamate, N-nitrate or A-acetate) were synthesized by the precipitation-deposition (PD) method. The catalysts were characterized by N2-physisorption, XRD, TPR-H2, and TPD-CO2 techniques. The different catalytic activity (conversion) and selectivity, observed in CO2 methanation carried out under relatively mild conditions (atmospheric pressure; temperatures: 250-450 °C) are related and explained by the difference in textural properties, metallic Ni-crystallite size, reducibility, and basicity of studied catalysts. The results showed that catalyst derived from Ni-nitrate salt (NiMg/D-N) is more suitable for the preparation of efficient catalyst for CO2 methanation than its counterparts derived from sulfamate (NiMg/D-S) or acetate (NiMg/D-A) nickel salt. The NiMg/D-N catalyst showed the highest specific surface area and total basicity, and the best catalytic performance with CO2 conversion of 63.3 % and CH4 selectivity of 80.9 % at 450 °C.


2020 ◽  
Vol 1001 ◽  
pp. 79-83
Author(s):  
Zhen Xing Han ◽  
Si Xi Guo ◽  
Kai Ming Li ◽  
Bing Yao ◽  
Ming Song ◽  
...  

The hydrogenation of CO2 to CH4 can realize the utilization of CO2, which has an important implications to both the energy and environment. As a result of the low catalytic activity of the supported Ni/SiO2 catalyst, the ZrO2 is added to improve its catalytic performance by the impregnation method. The experimental results show that ZrO2 is an effective promoter to enhance the low-temperature catalytic activity of Ni/SiO2 catalyst.


Sign in / Sign up

Export Citation Format

Share Document