scholarly journals Surface Oxidation of Supported Ni Particles and Its Impact on the Catalytic Performance during Dynamically Operated Methanation of CO2

Catalysts ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 279 ◽  
Author(s):  
Benjamin Mutz ◽  
Andreas Gänzler ◽  
Maarten Nachtegaal ◽  
Oliver Müller ◽  
Ronald Frahm ◽  
...  
2021 ◽  
Vol 1016 ◽  
pp. 1417-1422
Author(s):  
Chao Sun ◽  
Jugoslav Krstic ◽  
Vojkan Radonjic ◽  
Miroslav Stankovic ◽  
Patrick da Costa

This study is aimed to investigate the effect of Ni precursor salts on the properties (textural, phase-structural, reducibility, and basicity), and catalytic performance of diatomite supported Ni-Mg catalyst in methanation of CO2. The NiMg/D-X catalysts derived from various nickel salts (X = S-sulfamate, N-nitrate or A-acetate) were synthesized by the precipitation-deposition (PD) method. The catalysts were characterized by N2-physisorption, XRD, TPR-H2, and TPD-CO2 techniques. The different catalytic activity (conversion) and selectivity, observed in CO2 methanation carried out under relatively mild conditions (atmospheric pressure; temperatures: 250-450 °C) are related and explained by the difference in textural properties, metallic Ni-crystallite size, reducibility, and basicity of studied catalysts. The results showed that catalyst derived from Ni-nitrate salt (NiMg/D-N) is more suitable for the preparation of efficient catalyst for CO2 methanation than its counterparts derived from sulfamate (NiMg/D-S) or acetate (NiMg/D-A) nickel salt. The NiMg/D-N catalyst showed the highest specific surface area and total basicity, and the best catalytic performance with CO2 conversion of 63.3 % and CH4 selectivity of 80.9 % at 450 °C.


2020 ◽  
Vol 1001 ◽  
pp. 79-83
Author(s):  
Zhen Xing Han ◽  
Si Xi Guo ◽  
Kai Ming Li ◽  
Bing Yao ◽  
Ming Song ◽  
...  

The hydrogenation of CO2 to CH4 can realize the utilization of CO2, which has an important implications to both the energy and environment. As a result of the low catalytic activity of the supported Ni/SiO2 catalyst, the ZrO2 is added to improve its catalytic performance by the impregnation method. The experimental results show that ZrO2 is an effective promoter to enhance the low-temperature catalytic activity of Ni/SiO2 catalyst.


2016 ◽  
Vol 55 (16) ◽  
pp. 4451-4460 ◽  
Author(s):  
Salvatore Abate ◽  
Chalachew Mebrahtu ◽  
Emanuele Giglio ◽  
Fabio Deorsola ◽  
Samir Bensaid ◽  
...  

Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 599 ◽  
Author(s):  
Le ◽  
Kim ◽  
Jeong ◽  
Park

In this study, unique core-shell aluminate spinel supports, Al@MAl2O4 (M = Zn, Mg, or Mn), were obtained by simple hydrothermal surface oxidation and were applied to the preparation of supported Ni catalysts for CO2 methanation. For comparison, CO methanation was also evaluated using the same catalysts. The prepared catalysts were characterized with a variety of techniques, including N2 physisorption, CO2 chemisorption, H2 chemisorption, temperature-programmed reduction with H2, temperature-programmed desorption of CO2, X-ray diffraction, high-resolution transmission electron microscopy, and in-situ diffuse reflectance infrared Fourier transform spectroscopy. The combination of supports with core-shell spinel structures and Ni doping with a deposition–precipitation method created outstanding catalytic performance of the Ni catalysts supported on Al@MgAl2O4 and Al@MnAl2O4 due to improved dispersion of Ni nanoparticles and creation of moderate basic sites with suitable strength. Good stability of Ni/Al@MnAl2O4 catalyst was also confirmed in the study.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Seung-Hee Ryu ◽  
Cheol Hong Hwang ◽  
Hojin Jeong ◽  
Giyeong Kim ◽  
Sung Il Ahn ◽  
...  

Pt/γ-Al2O3 catalysts coated on honeycomb-shaped stainless STS-444 steel substrates with a γ-Al2O3 intermediate layer were prepared using a conventional washcoating method. The intermediate layer was formed on the substrate surface through oxidation using pack cementation. The monolithic catalysts with the intermediate layer were fabricated for potential applications to pre-turbocharger catalysts, which suffer from severe conditions such as vibrations of the engine and high flow rates of exhaust gas. Adhesive strength tests and simultaneous oxidation reactions of CO and C3H6 were carried out for the Pt/γ-Al2O3 monolithic catalysts with and without the intermediate layer. The catalysts with an intermediate layer showed much stronger adhesion than the catalysts without an intermediate layer. Thus, the formation of a γ-Al2O3 intermediate layer by surface oxidation through pack cementation facilitated a significant enhancement of the catalyst adhesion strength without catalytic performance degradation.


2011 ◽  
Vol 236-238 ◽  
pp. 724-727
Author(s):  
Feng Li ◽  
Hua Song ◽  
Hua Yang Zhang

A series of Al2O3-ZrO2 (AZ-X) composite oxides with different ZrO2 contents were prepared by a chemical precipitation method. Ni-P/AZ-X catalysts were prepared by temperature-programmed reduction. The supports and catalysts were extensively characterized by X-ray diffraction (XRD) and BET. The effects of support composition and P/Ni molar ratios on the catalytic performance of the catalysts were investigated by thiophene hydrodesulfurization (HDS) and pyridine hydrodenitrogenation (HDN). In comparison with Al2O3, Al2O3-ZrO2 (20 wt% ZrO2) composite oxide supported Ni-P catalyst exhibited higher activity and the activities of HDS and HDN increased by 7.5 % and 11.1 %, respectively. Studies of Ni-P/AZ-X catalysts with varying initial P/Ni molar ratios indicated that oxidic precursors with molar ratios of P/Ni = 2/1 yielded catalyst containing phase-pure Ni2P which exhibited optimal activity.


Sign in / Sign up

Export Citation Format

Share Document