Effect of methanol on the electrochemical behaviour and surface conductivity of niobium carbide-modified stainless steel for DMFC bipolar plate

2016 ◽  
Vol 41 (33) ◽  
pp. 14864-14871 ◽  
Author(s):  
Lixia Wang ◽  
Haili Gao ◽  
Hua Fang ◽  
Shiwen Wang ◽  
Juncai Sun
Author(s):  
Heli Wang ◽  
Glenn Teeter ◽  
John A. Turner

Austenitic 349 stainless steel was nitrided in an NH3 plasma. A low interfacial contact resistance was obtained with the nitrided steel. Glancing angle X-ray diffraction suggests that the nitrided layer is very thin and possibly amorphous. X-ray photoelectron spectroscopy (XPS) studies show that the nitrided layer is composed of mixed oxides and nitrides of Fe3+ and Cr3+. Contaminations of V and Sn were also observed, though their influence on the as-nitrided surface conductivity is not clear. The nitrided samples were investigated in a simulated polymer electrolyte membrane fuel cell (PEMFC) environment, and showed excellent corrosion resistance. The XPS depth profile indicated that the passive film, which formed on the plasma-nitrided steel in the PEMFC anode environment, is composed of mixed oxides and nitrides, in which chromium oxide/nitride dominates the surface chemistry. No V or Sn was detected on the surface after the polarization tests. For the PEMFC bipolar plate application, nitridation in NH3 plasma is a promising surface treatment approach, though more research is needed to investigate the influence of the plasma density and substrate bias on the surface conductivity and performance of the nitrided steel in PEMFC environments.


2019 ◽  
Vol 66 (2) ◽  
pp. 222-229 ◽  
Author(s):  
Jixin Han ◽  
Haibang Zhang ◽  
Juncai Sun ◽  
Wenyuan Zhao ◽  
Jinlong Cui

Purpose The purpose of this study is to improve the surface electrical conductivity and corrosion resistance of AISI430 stainless steel (430 SS) as bipolar plates for direct formic acid fuel cell (DFAFC). Design/methodology/approach The niobium diffusion layers have been successfully synthesized on 430 SS substrate by the plasma surface diffusion alloying technique under different diffusion alloying time. Findings The surface morphology of Nb-modified 430 SS prepared under the diffusion alloying time of 2 h is more homogeneous, relatively sleek and compact without surface micropore and other common surface blemishes. The potentiostatic and potentiodynamic polarization measurements manifest that Nb-modified 430 SS prepared under the diffusion alloying time of 2 h enormously ameliorate the corrosion resistance of bare 430 SS compared with other Nb-modified 430 SS samples and its corrosion current density is maintained at −1.4 µA cm−2 in simulated anodic environment of DFAFC (0.05 M H2SO4 + 2 ppm HF + 10 M formic acid at 50 °C). Originality/value The effect of diffusion alloying time on the corrosion resistance and surface conductivity of Nb-modified 430 SS has been carefully studied. The Nb-modified 430 SS samples prepared at the diffusion alloying time of 2 h have the best surface electrical conductivity and corrosion resistance in the simulated anodic environment of DFAFC.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 38
Author(s):  
Matthias Weiss ◽  
Peng Zhang ◽  
Michael P. Pereira ◽  
Bernard F. Rolfe ◽  
Daniel E. Wilkosz ◽  
...  

This study investigates the effect of grain size and composition on the material properties and forming limits of commercially supplied stainless steel foil for bipolar plate manufacture via tensile, stretch forming and micro-stamping trials. It is shown that in commercially supplied stainless steel the grain size can vary significantly and that ‘size effects’ can be influenced by prior steel processing and composition effects. While the forming limits in micro-stamping appear to be directly linked to the plane strain forming limits of the individual stainless steel alloys, there was a clear effect of the tensile anisotropy. In contrast to previous studies, forming severity and the likelihood of material failure did not increase with a decreasing channel profile radius. This was related to inaccuracies of the forming tool profile shape.


2017 ◽  
Vol 42 (9) ◽  
pp. 6303-6309 ◽  
Author(s):  
Yang Yu ◽  
Sayoko Shironita ◽  
Takaaki Mizukami ◽  
Kunio Nakatsuyama ◽  
Kenichi Souma ◽  
...  

2010 ◽  
Vol 113-116 ◽  
pp. 2255-2261
Author(s):  
Dong Ming Zhang ◽  
Lu Guo ◽  
Liang Tao Duan ◽  
Zai Yi Wang

In the present study, we try to prepare hydrophobic film coated on stainless steel as the bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Magnetron sputtering (MS) was adoped to prepare the Cr3Ni2/Cr2N multi-layer coated on stainless steel. The corrosion resistance and electrical conductance of the coated substrate were tested. The water contact angles were measured. The film exhibits improved corrosion resistance and electrical conductance. The corrosion current is 0.58µA.cm-2 and the contact resistance at 240N.cm-2 is 8.5mΩ.cm2. Meanwhile, it is a kind of hydrophobic film with water contact angle of 107o. The performance shows strong dependance on microstructural characteristics. The nano-protrudes on the SS304/Cr3Ni2/Cr2N surface result in the film with hydrophobic property, just like the effect of lotus surface.


Sign in / Sign up

Export Citation Format

Share Document