Effect of diffusion alloying time on corrosion resistance and surface conductivity of niobium-alloying-modified AISI430 stainless steel for DFAFC bipolar plate

2019 ◽  
Vol 66 (2) ◽  
pp. 222-229 ◽  
Author(s):  
Jixin Han ◽  
Haibang Zhang ◽  
Juncai Sun ◽  
Wenyuan Zhao ◽  
Jinlong Cui

Purpose The purpose of this study is to improve the surface electrical conductivity and corrosion resistance of AISI430 stainless steel (430 SS) as bipolar plates for direct formic acid fuel cell (DFAFC). Design/methodology/approach The niobium diffusion layers have been successfully synthesized on 430 SS substrate by the plasma surface diffusion alloying technique under different diffusion alloying time. Findings The surface morphology of Nb-modified 430 SS prepared under the diffusion alloying time of 2 h is more homogeneous, relatively sleek and compact without surface micropore and other common surface blemishes. The potentiostatic and potentiodynamic polarization measurements manifest that Nb-modified 430 SS prepared under the diffusion alloying time of 2 h enormously ameliorate the corrosion resistance of bare 430 SS compared with other Nb-modified 430 SS samples and its corrosion current density is maintained at −1.4 µA cm−2 in simulated anodic environment of DFAFC (0.05 M H2SO4 + 2 ppm HF + 10 M formic acid at 50 °C). Originality/value The effect of diffusion alloying time on the corrosion resistance and surface conductivity of Nb-modified 430 SS has been carefully studied. The Nb-modified 430 SS samples prepared at the diffusion alloying time of 2 h have the best surface electrical conductivity and corrosion resistance in the simulated anodic environment of DFAFC.

2019 ◽  
Vol 66 (4) ◽  
pp. 520-526
Author(s):  
Fupeng Cheng ◽  
Jinglong Cui ◽  
Shuai Xu ◽  
Hongyu Wang ◽  
Pengchao Zhang ◽  
...  

Purpose The purpose of this paper is to improve the surface electrical conductivity and corrosion resistance of AISI 430 stainless steel (430 SS) as bipolar plates for proton exchange membrane fuel cells (PEMFCs), a protective Nb-modified layer is formed onto stainless steel via the plasma surface diffusion alloying method. The effect of diffusion alloying time on electrochemical behavior and surface conductivity is evaluated. Design/methodology/approach In this work, the surface electrical conductivity and corrosion resistance of modified specimen are evaluated by the potentiodynamic and potentionstatic polarization tests. Moreover, the hydrophobicity is also investigated by contact angle measurement. Findings The Nb-modified 430 SS treated by 1.5 h (1.5Nb) presented a lower passivation current density, lower interfacial contact resistance and a higher hydrophobicity than other modified specimens. Moreover, the 1.5 Nb specimen presents a smoother surface than other modified specimens after potentionstatic polarization tests. Originality/value The effect of diffusion alloying time on electrochemical behavior, surface conductivity and hydrophobicity of modified specimen is evaluated. The probable anti-corrosion mechanism of Nb-modified specimen in simulated acid PEMFC cathode environment is presented.


2011 ◽  
Vol 214 ◽  
pp. 291-295
Author(s):  
Wei Yu Ho ◽  
Chung Hsien Yang ◽  
Wei Che Huang ◽  
Woei Yun Ho

In this study, various multilayered TiN/CrN coatings were deposited on the SS316L stainless steel substrates by the cathodic arc deposition technique. By varying the turntable rotation speed, the multilayered coatings with different periodic layer thickness were obtained. The main target of this study is to enhance the corrosion resistance and electrical conductivity of the stainless steel for potential application of metallic bipolar plate of PEMFC. The results showed that all of the TiN/CrN coated samples presented a better corrosion resistance than the bare stainless steel substrate. The multi-layered coatings deposited at the 2 rpm provided the best corrosion resistance of the coated stainless steels when they were subjected to polarization test in 1M H2SO4 solution. The result of single fuel cell test shows that the TiN/CrN multi-layered coating with the best corrosion resistance is considered to be a candidate for PEMFC bipolar plate application in this study.


2021 ◽  
Vol 12 (3) ◽  
pp. 101
Author(s):  
Yu Leng ◽  
Daijun Yang ◽  
Pingwen Ming ◽  
Bing Li ◽  
Cunman Zhang

Corrosion resistance and electrical conductivity of stainless steel bipolar plate remains a big challenge while it has been regarded as the most promising candidate for proton exchange membrane fuel cell. The purpose of this paper is to study the effects of pickling and passivation by sulfuric acid and a mixture of nitric and fluoric acids, respectively, on corrosion resistance and electrical conductivity of stainless steel 316L (SS316L) bipolar plate. First, pickling of the specimens of SS316L is performed in a 15 wt.% H2SO4. Afterwards, the specimens are passivated in a mixture of 12 wt.% HF and 4 wt.% HNO3. Electrochemical and interfacial conductivity tests are conducted to examine the change in corrosion resistance and electrical conductivity of SS316L. Finally, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) reveal the evolution of surface morphology, chemical composition and surface conductivity. The results show that the corrosion resistance and electrical conductivity of SS316L could be improved significantly by pickling and passivation. The increase in Cr:Fe ratio as well as a more uniform surface with higher conductivity is the main reason for the improvement of corrosion resistance and interfacial conductivity of SS316L.


2010 ◽  
Vol 113-116 ◽  
pp. 2255-2261
Author(s):  
Dong Ming Zhang ◽  
Lu Guo ◽  
Liang Tao Duan ◽  
Zai Yi Wang

In the present study, we try to prepare hydrophobic film coated on stainless steel as the bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Magnetron sputtering (MS) was adoped to prepare the Cr3Ni2/Cr2N multi-layer coated on stainless steel. The corrosion resistance and electrical conductance of the coated substrate were tested. The water contact angles were measured. The film exhibits improved corrosion resistance and electrical conductance. The corrosion current is 0.58µA.cm-2 and the contact resistance at 240N.cm-2 is 8.5mΩ.cm2. Meanwhile, it is a kind of hydrophobic film with water contact angle of 107o. The performance shows strong dependance on microstructural characteristics. The nano-protrudes on the SS304/Cr3Ni2/Cr2N surface result in the film with hydrophobic property, just like the effect of lotus surface.


2011 ◽  
Vol 674 ◽  
pp. 159-163 ◽  
Author(s):  
Maciej Tulinski ◽  
Mieczyslaw Jurczyk

In this work Ni-free austenitic stainless steels with nanostructure and their nanocomposites were synthesized by mechanical alloying (MA), heat treatment and nitriding of elemental microcrystalline Fe, Cr, Mn and Mo powders with addition of hydroxyapatite (HA). Microhardness and corrosion tests' results of obtained materials are presented. Mechanical alloying and nitriding are very effective technologies to improve the corrosion resistance of stainless steel. Decreasing the corrosion current density is a distinct advantage for prevention of ion release and it leads to better cytocompatibility. Similar process in case of nanocomposites of stainless steel with hydroxyapatite helps achieve even better mechanical properties and corrosion resistance. Hence nanocrystalline nickel-free stainless steels and nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants, e.g. orthopedic implants.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chuanbo Zheng ◽  
Cheng Zhang ◽  
Xiao Yong Wang ◽  
Jie Gu

Purpose Duplex stainless steel is composed of equal amounts of austenite and ferrite, which has excellent corrosion resistance and strength. However, after the metal was welded, the ratio of austenite and ferrite in the joint is unbalanced, and secondary phase precipitates are produced, which is also an important cause of pitting corrosion in the joint. Design/methodology/approach This paper aims to study the mechanical and corrosion behavior of welded joints, by adjusting the welding parameters of laser hybrid welding, dual heat sources are used to weld 2205 duplex stainless steel. The two-phase content of different parts of the welded joint is measured to study the influence of the ratio of the two-phase on the mechanical and corrosion properties of the joint. Findings The ratio of austenite and ferrite in different welded joints has an obvious difference, and from top to bottom, the austenite content decreased gradually, and the ferrite content increased gradually. The harmful phases are precipitated in the middle and lower part of the joint. The strength of welded joints is slightly lower than that of base metal. At the same time, the fracture analysis shows that some ferrite phases are affected by the precipitate in the grain and produce quasi-cleavage fracture. The corrosion results show that the corrosion resistance of the welded joints is lower than that of the base metal, and the concentration of chloride ions affects the corrosion resistance. Originality/value In this paper, the authors use the influence of different welding processes on the two-phase ratio of the joint to further study the influence of the microstructure on the corrosion resistance and mechanical properties of the weld.


2019 ◽  
Vol 66 (6) ◽  
pp. 774-781 ◽  
Author(s):  
Jeetendra Kumar Malav ◽  
Ramesh C. Rathod ◽  
Vipin Tandon ◽  
Awanikumar P. Patil

Purpose The purpose of this study is to improve the anticorrosion performance of low nickel stainless steel (AISI 201) in 3.5% NaCl by electroactive polyimide/copper oxide (EPI/CuO) composites coating. Design/methodology/approach Electroactive polyimide/copper oxide (EPI/CuO) composites were prepared by oxidative coupling polymerization followed by thermal imidization method. Findings The functional and structural properties of composites were characterized by X-ray diffraction, Fourier transmission infra-red and ultra violet-visible spectroscopy and the surface topography was characterized by field emission scanning electron microscope analysis and anticorrosion performance in 3.5 Wt.% NaCl was evaluated by electrochemical techniques. The obtained results of electrochemical techniques measurement indicated that the composites coated samples give better corrosion protection against attacking electrolyte. Originality/value The ever-increasing price of nickel (Ni) is driving the industries to use low-Ni austenitic stainless steels (ASSs). However, it exhibits relatively poor corrosion resistance as compared with conventional Cr-Ni ASSs. Nonetheless, its corrosion resistance can be enhanced by polymeric (electroactive polyimide [EPI]) coating. CuO particles exhibit the hydrophobic properties and can be used as inorganic filler to incorporate in EPI to further enhance the corrosion protection. The present research paper is beneficial for industries to use low-cost AISI 201, enhance its corrosion resistance and replace the use of costly conventional Cr-Ni ASSs.


2018 ◽  
Vol 5 (9) ◽  
pp. 17852-17856
Author(s):  
Pramod Mandal ◽  
Uttam kumar Chanda ◽  
Sudesna Roy

Sign in / Sign up

Export Citation Format

Share Document