Performance and emissions of hydrogen-diesel dual direct injection (H2DDI) in a single-cylinder compression-ignition engine

2021 ◽  
Vol 46 (1) ◽  
pp. 1302-1314
Author(s):  
Xinyu Liu ◽  
Aleš Srna ◽  
Ho Lung Yip ◽  
Sanghoon Kook ◽  
Qing Nian Chan ◽  
...  
Author(s):  
N. T. Shoemaker ◽  
C. M. Gibson ◽  
A. C. Polk ◽  
S. R. Krishnan ◽  
K. K. Srinivasan

Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4-cylinder compression ignition engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fueling were limited to 70% at 2.5 bars bmep and 48% at 10 bars bmep, and corresponding values for B100-propane dual fueling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bars bmep and the onset of engine knock at 10 bars bmep. Dual fuel BTEs approached straight B100 values at 10 bars bmep while they were significantly lower than B100 values at 2.5 bars bmep. In general, dual fueling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively, from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.


Sign in / Sign up

Export Citation Format

Share Document