Combustion enhancement and inhibition of hydrogen-doped methane flame by HFC-227ea

Author(s):  
Xiao Zhang ◽  
Zhao Yang ◽  
Xin Huang ◽  
Xingyu Wang ◽  
Yuelei Pan ◽  
...  
Author(s):  
Sylvain Lamige ◽  
C. Galizzi ◽  
M. KГјhni ◽  
K.M. Lyons ◽  
Frederic Andre ◽  
...  
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1018
Author(s):  
Massimo Marcioni ◽  
Jenny Alongi ◽  
Elisabetta Ranucci ◽  
Mario Malinconico ◽  
Paola Laurienzo ◽  
...  

The hitherto known polyamidoamines (PAAs) are not suitable as structural materials because they are usually water-soluble or swellable in water. This paper deals with the synthesis and characterization of semi-crystalline hydrophobic PAAs (H-PAAs) by combining different bis-sec-amines with bis-acrylamides obtained from C6–C12 bis-prim-amines. H-PAAs were initially obtained in a solution of benzyl alcohol, a solvent suitable for both monomers and polymers. Their number average molecular weights, M¯n, which were determined with 1H-NMR by evaluating the percentage of their terminal units, varied from 6000 to >10,000. The solubility, thermal properties, ignitability and water resistance of H-PAAs were determined. They were soluble in organic solvents, semi-crystalline and thermally stable. The most promising ones were also prepared using a bulk process, which has never been previously reported for PAA synthesis. In the form of films, these H-PAAs were apparently unaffected by water. The films underwent tensile and wettability tests. They showed similar Young moduli (260–263 MPa), whereas the maximum stress and the stress at break depended on the number of methylene groups of the starting bis-acrylamides. Their wettability was somewhat higher than that of common Nylons. Interestingly, none of the H-PAAs considered, either as films or powders, ignited after prolonged exposure to a methane flame.


Fuel ◽  
2021 ◽  
Vol 285 ◽  
pp. 119141
Author(s):  
Li Guo ◽  
Ming Zhai ◽  
Qianhao Shen ◽  
Hongkun Guo ◽  
Peng Dong

2021 ◽  
Vol 229 ◽  
pp. 111377
Author(s):  
Luming Fan ◽  
Bo Tian ◽  
Cheng Tung Chong ◽  
Mohammad Nazri Mohd Jaafar ◽  
Kenji Tanno ◽  
...  

2021 ◽  
Author(s):  
Ghazanfar Mehdi ◽  
Maria Grazia De Giorgi ◽  
Donato Fontanarosa ◽  
Sara Bonuso ◽  
Antonio Ficarella

Abstract This study focused on the comparative analysis about the production of ozone and active radicals in presence of nanopulsed plasma discharge on air and on fuel/air mixture to investigate its effect on combustion enhancement. This analysis is based on numerical modeling of air and methane/air plasma discharge with different repetition rates (100 Hz, 1000 Hz and 10000 Hz). To this purpose, a two-step approach has been proposed based on two different chemistry solvers: a 0-D plasma chemistry solver (ZDPlasKin toolbox) and a combustion chemistry solver (CHEMKIN software suite). Consequently, a comprehensive chemical kinetic scheme was generated including both plasma excitation reactions and gas phase reactions. Validation of air and methane/air mechanisms was performed with experimental data. Kinetic models of both air and methane/air provides good fitting with experimental data of O atom generation and decay process. ZDPlasKin results were introduced in CHEMKIN in order to analyze combustion enhancement. It was found that the concentrations of O3 and O atom in air are higher than the methane/air activation. However, during the air activation peak concentration of ozone was significantly increased with repetition rates and maximum was observed at 10000 Hz. Furthermore, ignition timings and flammability limits were also improved with air and methane/air activation but the impact of methane/air activation was comparatively higher.


Author(s):  
Johannes Peterleithner ◽  
Andreas Marn ◽  
Jakob Woisetschläger

In this work, an atmospheric model combustion chamber was characterized employing Laser Vibrometry, chemiluminescence and Particle Image Velocimetry. The test object was a variable geometry burner enclosed with a liner, with the flame optically accessible through four fused silica windows. In this burner with adjustable flame conditions the cavity of the atmospheric model combustion chamber was excited at a frequency around 200Hz. Resonant and non-resonant flame conditions were investigated and compared by laser vibrometer interferometry, schlieren visualization and OH*/CH* chemiluminescence. Additionally, the velocity field was recorded with Particle Image Velocimetry, while the aerodynamics of the burner plenum was analyzed with Computational Fluid Dynamics.


Sign in / Sign up

Export Citation Format

Share Document