Ozone Production With Plasma Discharge: Comparisons Between Activated Air and Activated Fuel/Air Mixture

2021 ◽  
Author(s):  
Ghazanfar Mehdi ◽  
Maria Grazia De Giorgi ◽  
Donato Fontanarosa ◽  
Sara Bonuso ◽  
Antonio Ficarella

Abstract This study focused on the comparative analysis about the production of ozone and active radicals in presence of nanopulsed plasma discharge on air and on fuel/air mixture to investigate its effect on combustion enhancement. This analysis is based on numerical modeling of air and methane/air plasma discharge with different repetition rates (100 Hz, 1000 Hz and 10000 Hz). To this purpose, a two-step approach has been proposed based on two different chemistry solvers: a 0-D plasma chemistry solver (ZDPlasKin toolbox) and a combustion chemistry solver (CHEMKIN software suite). Consequently, a comprehensive chemical kinetic scheme was generated including both plasma excitation reactions and gas phase reactions. Validation of air and methane/air mechanisms was performed with experimental data. Kinetic models of both air and methane/air provides good fitting with experimental data of O atom generation and decay process. ZDPlasKin results were introduced in CHEMKIN in order to analyze combustion enhancement. It was found that the concentrations of O3 and O atom in air are higher than the methane/air activation. However, during the air activation peak concentration of ozone was significantly increased with repetition rates and maximum was observed at 10000 Hz. Furthermore, ignition timings and flammability limits were also improved with air and methane/air activation but the impact of methane/air activation was comparatively higher.

Author(s):  
Roda Bounaceur ◽  
Pierre-Alexandre Glaude ◽  
Baptiste Sirjean ◽  
René Fournet ◽  
Pierre Montagne ◽  
...  

Gas turbines burn a large variety of gaseous fuels under elevated pressure and temperature conditions. During transient operations like maintenance, start-ups or fuel transfers, variable gas/air mixtures flow through the gas piping system and can cause damages in case of ignition. In order to properly control this risk of explosion and ensure safe operation, it is of the essence to have a good knowledge of the flammability limits of the gas mixtures involved, and to be in position to define safe inerting conditions every time it is required. While well-established methods are available in the engineering science to calculate flammability limits of fuel/air mixtures, no systematic methodology exists — to the authors’ knowledge — for the prediction of the Lower and Upper Flammability Limits (UFL-LFL) of gaseous blends containing variable amounts of inert components and over a large temperature and pressure range. The purpose of this study was then the evaluation of the LFL and UFL of multi-component fuels in air, in function of pressure, temperature and the concentrations of the most frequently used inerting gases, namely: nitrogen, carbon dioxide and steam. Different prediction criteria proposed in the literature were tested and eventually an original methodology based on the adiabatic flame temperature (Tad) was adopted as criterion and extended to gas mixtures and to high temperatures and pressures. Flame temperatures of different blends were calculated for different initial conditions assuming the access to the chemical equilibrium. Minimum temperature criteria corresponding to the Tad values reached at the LFL and UFL equivalence ratios were deduced from experimental data for each individual combustible molecule. It has been then possible to evaluate the minimum Tad values which ensure flame propagation of fuel blends on the lean and rich sides and to deduce the flammability limits. These calculations were repeated while adding various contents of the three selected inert gases. The methodology was validated by comparison against experimental data when available. The method proves to be simple, accurate, easy to use and applicable to large ranges of pressure, temperature and fuel compositions and to various diluents. The results confirm and quantify some well-known trends of flammability limits, e.g. their widening with increasing initial temperature and pressure, with a stronger effect on UFL than on LFL. The impact of the nature of the inerting gas was also successfully simulated for variable initial conditions and fuel compositions.


2020 ◽  
Vol 197 ◽  
pp. 10001
Author(s):  
Donato Fontanarosa ◽  
Ghazanfar Mehdi ◽  
Maria Grazia De Giorgi ◽  
Antonio Ficarella

At present, development of plasma assisted ignition and combustion is a very promising research area due to its wide applications in the field of aeronautical engines and power sector. Plasma discharge can improve the combustion because it produces large number of chemically active particles which affects the chemical reaction. Simulation is an effective tool to analyze the interaction between the plasma and the flame through the implementation of plasma-assisted combustion. This study focused on three main objectives. Initially a microscopic plasma model with detailed kinetic plasma mechanisms was developed, then the validation of these mechanisms in air/methane mixture has been performed. Finally, the effects of nano pulsed plasma discharge on combustion have been investigated. In order to accomplish the above task, two numerical tools Chemical Kinetic Solver (CHEMKIN) and Plasma Kinetic Solver (ZDPlasKin) are used. It was found that the kinetic model of plasma provides good overall agreement with experimental data and identify key processes for species (e.g. O atom) generation and decay. The results showed that with the increase of reduced electric field, active particles and intermediate species/radicals (in particular ozone) are increased. ZDPlasKin results were incorporated in CHEMKIN to investigate and compare the flame speed, thermal and chemical effect by using a GRI-Mech scheme modified with the addition of ozone reactions. It has been found that with the adding of plasma flame speed was increased up to 26% at stoichiometric ratio. The chemical heat release also showed increment at low temperatures that confirmed the combustion enhancement. Furthermore, ignition delay timings were significantly reduced with the plasma excitation.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jure Žigon ◽  
Matjaž Pavlič ◽  
Pierre Kibleur ◽  
Jan Van den Bulcke ◽  
Marko Petrič ◽  
...  

AbstractPlasma treatment is becoming a mature technique for modification of surfaces of various materials, including wood. A better insight in the treatment process and the impact of the plasma on properties of wood bulk are still needed. The study was performed on Norway spruce and common beech wood, as well as their thermally modified variations. The formations of the airborne discharge, as well as mass changes of the treated wood, were monitored. The impact of such treatment on wood-coating interaction was investigated by evaluating the dynamic wettability and penetration into wood. At the wood surface, plasma streamers were observed more intense on denser latewood regions. Wood mass loss was higher with increasing number of passes through the plasma discharge and was lower for thermally modified wood than for unmodified wood. Plasma treatment increased the surface free energy of all wood species and lowered the contact angles of a waterborne coating, these together indicating enhanced wettability after treatment. Finally, the distribution and penetration depth of the coating were studied with X-ray microtomography. It was found that the coating penetrated deeper into beech than into spruce wood. However, the treatment with plasma increased the penetration of the coating only into spruce wood.


2011 ◽  
Vol 20 (08) ◽  
pp. 1735-1754 ◽  
Author(s):  
M. MOHERY ◽  
M. ARAFA

The present paper deals with the interactions of 22 Ne and 28 Si nuclei at (4.1–4.5)A GeV /c with emulsion. Some characteristics of the compound multiplicity nc given by the sum of the number of shower particles ns and grey particles ng have been investigated. The present experimental data are compared with the corresponding ones calculated according to modified cascade evaporation model (MCEM). The results reveal that the compound multiplicity distributions for these two reactions are consistent with the corresponding ones of MCEM data. It can also be seen that the peak of these distributions shifts towards a higher value of nc with increasing projectile mass. It may further be seen that the compound multiplicity distributions becomes broader with increasing target size and its width increases with the size of the projectile nucleus. In addition, it has been found that the MCEM can describe the compound multiplicity characteristics of the different projectile, target and the correlation between different emitted particles. The values of average compound multiplicity increase with increasing mass of the projectile. Furthermore, it is observed that while the value of 〈nc〉 depends on the mass number of the projectile Ap and the target mass number At, the value of the ratio 〈nc〉/D(nc) seems to be independent of Ap and At. The impact parameter is found to affect the shape of the compound multiplicity distribution. Finally, the dependence of the average compound multiplicity on the numbers of grey and black particles, and the sum of them, is obvious. The values of the slope have been found to be independent of the projectile nucleus.


2009 ◽  
Vol 9 (11) ◽  
pp. 3731-3743 ◽  
Author(s):  
M. Mena-Carrasco ◽  
G. R. Carmichael ◽  
J. E. Campbell ◽  
D. Zimmerman ◽  
Y. Tang ◽  
...  

Abstract. The impact of Mexico City (MCMA) emissions is examined by studying its effects on air quality, photochemistry, and on ozone production regimes by combining model products and aircraft observations from the MILAGRO experiment during March 2006. The modeled influence of MCMA emissions to enhancements in surface level NOx, CO, and O3 concentrations (10–30% increase) are confined to distances <200 km, near surface. However, the extent of the influence is significantly larger at higher altitudes. Broader MCMA impacts (some 900 km Northeast of the city) are shown for specific outflow conditions in which enhanced ozone, NOy, and MTBE mixing ratios over the Gulf of Mexico are linked to MCMA by source tagged tracers and sensitivity runs. This study shows that the "footprint" of MCMA on average is fairly local, with exception to reactive nitrogen, which can be transported long range in the form of PAN, acting as a reservoir and source of NOx with important regional ozone formation implications. The simulated effect of MCMA emissions of anthropogenic aerosol on photochemistry showed a maximum regional decrease of 40% in J[NO2→NO+O], and resulting in the reduction of ozone production by 5–10%. Observed ozone production efficiencies are evaluated as a function of distance from MCMA, and by modeled influence from MCMA. These tend to be much lower closer to MCMA, or in those points where modeled contribution from MCMA is large. This research shows that MCMA emissions do effect on regional air quality and photochemistry, both contributing large amounts of ozone and its precursors, but with caveat that aerosol concentrations hinder formation of ozone to its potential due to its reduction in photolysis rates.


2013 ◽  
Vol 13 (24) ◽  
pp. 12215-12231 ◽  
Author(s):  
Z. S. Stock ◽  
M. R. Russo ◽  
T. M. Butler ◽  
A. T. Archibald ◽  
M. G. Lawrence ◽  
...  

Abstract. We examine the effects of ozone precursor emissions from megacities on present-day air quality using the global chemistry–climate model UM-UKCA (UK Met Office Unified Model coupled to the UK Chemistry and Aerosols model). The sensitivity of megacity and regional ozone to local emissions, both from within the megacity and from surrounding regions, is important for determining air quality across many scales, which in turn is key for reducing human exposure to high levels of pollutants. We use two methods, perturbation and tagging, to quantify the impact of megacity emissions on global ozone. We also completely redistribute the anthropogenic emissions from megacities, to compare changes in local air quality going from centralised, densely populated megacities to decentralised, lower density urban areas. Focus is placed not only on how changes to megacity emissions affect regional and global NOx and O3, but also on changes to NOy deposition and to local chemical environments which are perturbed by the emission changes. The perturbation and tagging methods show broadly similar megacity impacts on total ozone, with the perturbation method underestimating the contribution partially because it perturbs the background chemical environment. The total redistribution of megacity emissions locally shifts the chemical environment towards more NOx-limited conditions in the megacities, which is more conducive to ozone production, and monthly mean surface ozone is found to increase up to 30% in megacities, depending on latitude and season. However, the displacement of emissions has little effect on the global annual ozone burden (0.12% change). Globally, megacity emissions are shown to contribute ~3% of total NOy deposition. The changes in O3, NOx and NOy deposition described here are useful for quantifying megacity impacts and for understanding the sensitivity of megacity regions to local emissions. The small global effects of the 100% redistribution carried out in this study suggest that the distribution of emissions on the local scale is unlikely to have large implications for chemistry–climate processes on the global scale.


2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.


Author(s):  
Soham Mujumdar

Abstract There is a growing interest in developing the dry EDM process as a sustainable alternative to the conventional liquid dielectric-based EDM process. It is shown that the dry EDM process possesses advantages over the conventional process in terms of thermal damage, recast layer, and tool wear. However, there is a need to increase the productivity of the dry EDM process for its successful adaptation in the industry. This paper presents a model of dry EDM plasma discharge with air as the dielectric medium. The model uses global modeling (‘0D’) approach in which equations of mass balance, energy balance, and plasma expansion are solved simultaneously to obtain a time-dependent description of the plasma in terms of its composition, temperature, diameter, and heat flux to electrodes. The model includes reaction kinetics involving 622 reactions and 55 species to determine the air plasma composition. A single discharge dry EDM operation is successfully simulated using the model, and the effect of discharge current on the plasma is studied. An increase in the discharge current increases the electron density, temperature, and diameter of the plasma linearly, while heat flux to the workpiece increases exponentially. Overall, the model provides an essential tool to study the dry EDM process mechanisms at a fundamental level and devise methods for process improvements.


2021 ◽  
Author(s):  
Christoph Stähle ◽  
Monika Mayer ◽  
Christian Schmidt ◽  
Jessica Kult ◽  
Vinzent Klaus ◽  
...  

&lt;p&gt;As the production of ozone in surface air is determined by ambient temperature and by the prevalent chemical regime, a very different temperature dependence of ozone production emerges for nitrogen oxides (NO&lt;sub&gt;x&lt;/sub&gt;) and volatile organic compounds (VOC) limited regions. In this study we evaluated the temperature sensitivity of ozone production for rural, suburban as well as urban sites in Austria on seasonal basis. The analysis is based on 30 years of observational data from Austrian monitoring networks for the time period 1990 &amp;#8211; 2019. Reductions in precursor emissions as observed in 2020 in Austria due to the pandemic will be used to test the obtained results. Surface ozone, NO&lt;sub&gt;x&lt;/sub&gt;, daily sums of global radiation and minimum daily temperature are used as covariates in our study. The observed NO&lt;sub&gt;x&lt;/sub&gt; to VOC ratio at individual sites is variable over time due to changes in precursor emissions and/or the variability of meteorological parameters such as mixing layer height. At the site level we relate the temperature sensitivity of ozone production to the daily mean NO&lt;sub&gt;x&lt;/sub&gt; mixing ratio and the daily minimum temperature. This information allows us to determine the impact of past/future temperature changes on surface ozone abundance in the context of reductions of NO&lt;sub&gt;x&lt;/sub&gt; emissions and changing methane backgrounds.&lt;/p&gt;


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Bryana N Harris ◽  
Laura Woo ◽  
Jeffrey J Saucerman

Rationale: Heart failure is caused by the inability of adult mammalian hearts to overcome the loss of cardiomyocytes (CMs). This is due partly to the limited proliferative capacity of CMs, which exit the cell cycle and do not undergo cell division. Current knowledge in cardiac regeneration lacks an understanding of the molecular regulatory networks that determine whether CMs will progress through the cell cycle to proliferate. Our goal is to use computational modeling to understand the expression and activation levels of the core cell cycle network, specifically cyclins and cyclin-cyclin-dependent kinase (CDK) complexes. Methods: A model of core cell cycle dynamics was curated using previously published studies of CM proliferation regulators. This model incorporates those regulators known to stimulate G1/S and G2/M transitions through the core CDKs. The activity of each of the 22 network nodes (22 reactions) was predicted using a logic-based differential equation approach. The CDK model was then coupled with a minimal ODE model of cell cycle phase distributions and validated based on descriptions and experimental data from the literature. To prioritize key nodes for experimental validation, we performed a sensitivity analysis by stimulating individual knockdown for every node in the network, measuring the fractional activity of all nodes. Results: Our model confirmed that the knockdown of p21 and Rb protein and the overexpression of E2F transcription factor and cyclinD-cdk4 showed an increase in cells going through DNA synthesis and entering mitosis. A combined knockdown of p21 and p27 showed an increase of cells entering mitosis. Cyclin D-cdk4 and p21 overexpression showed a decrease and increase of Rb expression, respectively. Of the 14 model predictions, 12 agreed with experimental data in the literature. A comprehensive knockdown of the model nodes suggests that E2F (a key transcription factor driving DNA synthesis) is positively regulated by cyclin D while negatively regulated by GSK3B, SMAD3, and pRB. Conclusion: This model enables us to predict how cardiomyocytes respond to stimuli in the CDK network and identify potential therapeutic regulators that induce cardiomyocyte proliferation.


Sign in / Sign up

Export Citation Format

Share Document