scholarly journals The autothermal reforming of oxymethylenether from the power-to-fuel process

Author(s):  
Joachim Pasel ◽  
Dirk Schmitt ◽  
Remzi Can Samsun ◽  
Andreas Tschauder ◽  
Ralf Peters
2021 ◽  
Author(s):  
Pingyu Kuai ◽  
Yunxiang Pan ◽  
Weibin Li ◽  
Huimin Liu ◽  
Zhiwu Feng

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4767
Author(s):  
Lifita N. Tande ◽  
Erik Resendiz-Mora ◽  
Valerie Dupont

Empty fruit bunch, a significant by-product of the palm oil industry, represents a tremendous and hitherto neglected renewable energy resource for many countries in South East Asia and Sub-Saharan Africa. The design and simulation of a plant producing pure hydrogen through autothermal reforming (ATR) of palm empty fruit bunch (PEFB) was carried out based on successful laboratory experiments of the core process. The bio-oil feed to the ATR stage was represented in the experiments and in the simulation by a surrogate bio-oil mixture of 11 organic compounds shown to be main constituents of PEFB oil from previous work, and whose combined elemental composition and volatility was determined to be as close as possible to that of the real PEFB bio-oil. The experiments confirmed that H2 yields close to equilibrium predictions were achievable using an in-house synthetised Rh-Al2O3 catalyst in a packed bed reactor. Initial sensitivity analysis on the plant revealed that feed molar steam to carbon ratio should not exceed 3 for the optimal design of the ATR hydrogen production plant. An overall plant efficiency of 39.4% was obtained for the initial design, this value was improved to 67.5% by applying pinch analysis to enhance the integration of heat in the design. The proposed design renders CO2 savings of about 0.56 kg per kg of raw PEFB processed. The proposed design and accompanying experimental studies together make a strong case on the possibility of polygeneration of H2, heat, and power from an otherwise discarded agricultural waste.


Science ◽  
2004 ◽  
Vol 303 (5660) ◽  
pp. 993-997 ◽  
Author(s):  
G. A. Deluga

2006 ◽  
Vol 116 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Yazhong Chen ◽  
Hengyong Xu ◽  
Xianglan Jin ◽  
Guoxing Xiong

2007 ◽  
Vol 7 (11) ◽  
pp. 4013-4016 ◽  
Author(s):  
SeungSoo Lim ◽  
DongJu Moon ◽  
JongHo Kim ◽  
YoungChul Kim ◽  
NamCook Park ◽  
...  

Autothermal reforming of propane for hydrogen over Ni catalysts supported on a variety of perovskites was performed in an atmospheric flow reactor. Perovskite is known for its higher thermal stability and oxygen storage capacity, but catalytic activity of itself is low. A sites of the ABO3 structured perovskites were occupied by La while B sites by one of Fe, Co, Ni, and Al by citrate method. The composition of the reactant mixture was H2O/C/O2 = 8.96/1.0/1.1. The changes in the states of the catalysts after reaction were analyzed by XRD, TPD, and TGA. Ni/LaAlO3 catalyst maintained the perovskite structure after reaction. It showed higher hydrogen yield and thermal stability compared to those of the catalysts with Fe, Co, or Ni in B sites. Catalysts prepared by deposition-precipitation (DP) method showed higher activity than those prepared by impregnation method, presumably due to the smaller sizes of the NiO crystal particles.


2009 ◽  
Vol 34 (18) ◽  
pp. 7666-7675 ◽  
Author(s):  
Liming Shi ◽  
David J. Bayless ◽  
Michael E. Prudich

2006 ◽  
Vol 162 (2) ◽  
pp. 1254-1264 ◽  
Author(s):  
Aidu Qi ◽  
Shudong Wang ◽  
Guizhi Fu ◽  
Diyong Wu

Author(s):  
Shuyang Zhang ◽  
Xiaoxin Wang ◽  
Peiwen Li

On-board hydrogen production via catalytic autothermal reforming is beneficial to vehicles using fuel cells because it eliminates the challenges of hydrogen storage. As the primary fuel for both civilian and military air flight application, Jet-A fuel (after desulfurization) was reformed for making hydrogen-rich fuels in this study using an in-house-made Rh/NiO/K-La-Ce-Al-OX ATR catalyst under various operating conditions. Based on the preliminary thermodynamic analysis of reaction equilibrium, important parameters such as ratios of H2O/C and O2/C were selected, in the range of 1.1–2.5 and 0.5–1.0, respectively. The optimal operating conditions were experimentally obtained at the reactor’s temperature of 696.2 °C, which gave H2O/C = 2.5 and O2/C = 0.5, and the obtained fuel conversion percentage, hydrogen yield (can be large than 1 from definition), and energy efficiency were 88.66%, 143.84%, and 64.74%, respectively. In addition, a discussion of the concentration variation of CO and CO2 at different H2O/C, as well as the analysis of fuel conversion profile, leads to the finding of effective approaches for suppression of coke formation.


Sign in / Sign up

Export Citation Format

Share Document