Effects of flow pattern and hydrogen recirculation on consistency of current density distribution in a self-humidified polymer electrolyte membrane fuel cell analyzed by a segmented model

Author(s):  
Xuhui Wang ◽  
Yikang Lu ◽  
Jinling Liu ◽  
Sichuan Xu
Author(s):  
A. Jamekhorshid ◽  
G. Karimi ◽  
X. Li

Non-uniform current distribution in polymer electrolyte membrane fuel cells results in local over-heating, accelerated ageing, and lower power output than expected. This issue is very critical when fuel cell experiences water flooding. In this work, the performance of a PEM fuel cell is investigated under cathode flooding conditions. A partially flooded GDL model is proposed to study local current density distributions along flow fields over a wide range of cell operating conditions. The model results show as cathode inlet humidity and/or cell pressure increase the average current density for the unflooded portions of the cell increases but the system becomes more sensitive to flooding. Operating the cell at higher temperatures would lead to higher average current densities and the chance of system being flooded is reduced. In addition, higher cathode stoichiometries prevent system flooding but the average current density remains almost constant.


Author(s):  
Yeping Peng ◽  
Ghasem Bahrami ◽  
Hossein Khodadadi ◽  
Alireza Karimi ◽  
Ahmad Soleimani ◽  
...  

Purpose The purpose of this study is simulation of of polymer electrolyte membrane fuel cell. Proton-exchange membrane fuel cells are promising power sources for use in power plants and vehicles. These fuel cells provide a high level of energy efficiency at low temperature without any pollution. The convection inside the cell plays a key role in the electrochemical reactions and the performance of the cell. Accordingly, the transport processes in these cells have been investigated thoroughly in previous studies that also carried out functional modeling. Design/methodology/approach A multi-phase model was used to study the limitations of the reactions and their impact on the performance of the cell. The governing equations (conservation of mass, momentum and particle transport) were solved by computational fluid dynamics (CFD) (ANSYS fluent) using appropriate source terms. The two-phase flow in the fuel cell was simulated three-dimensionally under steady-state conditions. The flow of water inside the cell was also simulated at high-current density. Findings The simulation results suggested that the porosity of the gas diffusion layer (GDL) is one of the most important design parameters with a significant impact on the current density limitation and, consequently, on the cell performance. Originality/value This study was mainly focused on the two-phase analysis of the steady flow in the fuel cell and on investigating the impacts of a two-phase flow on the performance of the cell and also on the flow in the GDL, the membrane and the catalyst layer using the CFD.


Author(s):  
Rupak Banerjee ◽  
Chuzhang Han ◽  
Nan Ge ◽  
Aimy Bazylak

Water management is a critical component of extracting optimum performance and efficiency from polymer electrolyte membrane (PEM) fuel cells. During fuel cell operation, a balance needs to be maintained between excess water blocking the reactant pathways through the gas diffusion layer, and the requirement for membrane hydration. The ionic conductivity through the membrane depends strongly on the hydration of the membrane. The reactant gases in a PEM fuel cell are supplied through a humidification system to maintain appropriate levels of hydration in the membrane. The removal of the anode humidifier would significantly reduce the balance of plant costs and reduce the volume required for the fuel cell in an automotive setting. However, removing the anode humidification system could have adverse effects on membrane hydration and on fuel cell performance. In this study, the anode humidification was varied and the cell performance and the membrane resistance were monitored. Synchrotron X-ray radiography was conducted simultaneously to visualize the water distribution in the membrane, the gas diffusion layer, and the associated interfaces. It was observed that the anode humidification had a strong impact on the performance of the fuel cell, with the dry condition leading to voltage instability at a current density below 1.0 A/cm2. The membrane water content was observed to decrease with increases in operating current density.


Sign in / Sign up

Export Citation Format

Share Document