An adaptive sliding mode observer based near-optimal OER tracking control approach for PEMFC under dynamic operation condition

Author(s):  
Yun Zhu ◽  
Jianxiao Zou ◽  
Shuai Li ◽  
Chao Peng
Author(s):  
Monisha Pathak* ◽  
◽  
Dr. Mrinal Buragohain ◽  

This paper briefly discusses about the Robust Controller based on Adaptive Sliding Mode Technique with RBF Neural Network (ASMCNN) for Robotic Manipulator tracking control in presence of uncertainities and disturbances. The aim is to design an effective trajectory tracking controller without any modelling information. The ASMCNN is designed to have robust trajectory tracking of Robot Manipulator, which combines Neural Network Estimation with Adaptive Sliding Mode Control. The RBF model is utilised to construct a Lyapunov function-based adaptive control approach. Simulation of the tracking control of a 2dof Robotic Manipulator in the presence of unpredictability and external disruption demonstrates the usefulness of the planned ASMCNN.


2019 ◽  
Vol 42 (2) ◽  
pp. 214-227 ◽  
Author(s):  
Nadia Miladi ◽  
Habib Dimassi ◽  
Salim Hadj Said ◽  
Faouzi M’Sahli

In this paper, we propose an explicit nonlinear model predictive control (ENMPC) method based on a robust observer to solve the trajectory tracking problem for outdoor quadrotors. We take into consideration the external aerodynamic disturbances present in the dynamics of the Newton-Euler quadrotor model. To overcome the effects of these disturbances, a high gain observer combined with a first order sliding mode observer are proposed to estimate both the states and the unknown disturbances using the only positions and angular measurements of the quadrotor. The estimated signals are then used by the predictive controller in order to ensure the trajectory tracking objective. Despite the presence of bounded disturbances, the convergence of the composite controller (ENMPC technique with the latter observers) is guaranteed through a stability analysis. Theoretical results are validated with some numerical simulations showing the good performances of the proposed tracking control approach.


Author(s):  
Ke Shao ◽  
Jinchuan Zheng ◽  
Hai Wang ◽  
Xueqian Wang ◽  
Renquan Lu ◽  
...  

2018 ◽  
Vol 22 (2) ◽  
pp. 788-802
Author(s):  
Ledi Zhang ◽  
Shousheng Xie ◽  
Yu Zhang ◽  
Litong Ren ◽  
Bin Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document