Exploration of vacancy defect formation and evolution in low-energy ion implanted pure titanium

Author(s):  
Xudong An ◽  
Hongqiang Zhang ◽  
Te Zhu ◽  
Qianqian Wang ◽  
Peng Zhang ◽  
...  
1992 ◽  
Vol 262 ◽  
Author(s):  
A. Uedono ◽  
Y. Ujihira ◽  
L. Wei ◽  
Y. Tabuki ◽  
S. Tanigawa ◽  
...  

ABSTRACTVacancy-type defects in ion implanted Si were studied by a monoenergetic positron beam. The depth-distributions of the defects were obtained from measurements of Doppler broadening profiles of the positron annihilation as a function of incident positron energy. The results showed that a size of vacany-clusters introduced by 150-keV P+-ion implantation was found to be smaller than that introduced by 2-MeV P+-ion implantation. This was attributed to an overlap of collision cascades in low-energy (150 keV) ion implanted specimens. From isochronal annealing experiments for 80-keV B+- and 150-keV P+-ion implanted specimens, the defected region was removed by 1200 °C annealing, however, for 2-MeV P+-implanted specimen, two-types of oxygen-vacancy complexes were found to coexist even after 1200 °C annealing.


2016 ◽  
Vol 69 (4) ◽  
pp. 518-524 ◽  
Author(s):  
Younggil Jin ◽  
Jae-Min Song ◽  
Ki-Baek Roh ◽  
Nam-Kyun Kim ◽  
Hyun-Joon Roh ◽  
...  
Keyword(s):  

2003 ◽  
Vol 340-342 ◽  
pp. 719-723
Author(s):  
Prakash N.K. Deenapanray

2020 ◽  
Vol 308 ◽  
pp. 33-50
Author(s):  
Anna Woźniak ◽  
Marcin Adamiak

Selective Laser Melting SLM is one of the most popular three dimensional printing methods, which can be used for manufactured real elements (with high geometrical complexity) in many application, such as medicine, automotive or aerospace industries. The SLM final parts are characterized by high mechanical properties and satisfactory physicochemical properties. However, the properties of parts depend of process parameters optimization. In this paper, effects of processing parameters, such as laser power P, scanning speed SP, layer thickness t or point distance PD on defect formation and relative densities of manufactured elements are explored. For the purpose the stainless steel 316L and pure titanium Grade II are used. The process optimization were carried out according to the formula of energy density, which is delivered to the powder material. The stainless steel samples were divided into 12 groups, depends of the energy density. The titanium parts were printed at the same value of energy, and the process parameters are changed. The microscope observation and relative density measurements were carried out. Based on the obtained results, it can be confuted that the SLM parameters have a significant effect on the samples properties and the mechanism formed defect in both material are similar.


2004 ◽  
Vol 810 ◽  
Author(s):  
Nina Burbure ◽  
Kevin S. Jones

ABSTRACTPattern induced defects during advanced CMOS processing can lead to lower quality devices with high leakage currents. Within this study, the effects of oxide trenches on implant related defect formation and evolution in silicon patterned wafers is examined. Oxide filled trenches approximately 4000Å deep were patterned into 300 mm <100> silicon wafers. Patterning was followed by ion implantation of Si+ at energies ranging from 10 to 80 keV. Samples were amorphized with doses of 1×1015 atoms/cm2, 5×1015 atoms/cm2, and 1×1016 atoms/cm2. Two independent repeating structures were studied. The first structure is comprised of silicon oxide filled trench lines, 3.7μm wide spaced 12.5μm apart, while the second structure contains silicon squares, 0.6μm on a side, surrounded by a silicon oxide filled trench. Cross- sectional and planar view transmission electron microscopy (TEM) samples were used to examine the defect morphology after annealing at temperatures ranging from 700°C to 950°C and at times between 1 second and 1 minute. Following complete regrowth, an array of defects was observed to form near the surface at the silicon/silicon oxide interface. These trench edge defects appeared to nucleate at the amorphous-crystalline interface for all energies and doses studied. Upon a spike anneal at 700°C, it was observed that regrowth of the amorphous layer had completed except in the region near the trench edge. Thus, it is believed that this defect results from the pinning of the amorphous-crystalline interface along the trench edge during solid phase epitaxial regrowth (SPER).


Sign in / Sign up

Export Citation Format

Share Document