scholarly journals Using prediction polling for infectious disease forecasting

2020 ◽  
Vol 101 ◽  
pp. 374
Author(s):  
T. Sell ◽  
L. Warmbrod ◽  
M. Trotochaud ◽  
S. Ravi ◽  
E. Martin ◽  
...  
2018 ◽  
Author(s):  
Tad A. Dallas ◽  
Colin J. Carlson ◽  
Timothée Poisot

ABSTRACTUnderstanding pathogen outbreak and emergence events has important implications to the management of infectious disease. Apart from preempting infectious disease events, there is considerable interest in determining why certain pathogens are consistently found in some regions, and why others spontaneously emerge or reemerge over time. Here, we use a trait-free approach which leverages information on the global community of human infectious diseases to estimate the potential for pathogen outbreak, emergence, and re-emergence events over time. Our approach uses pairwise dissimilarities among pathogen distributions between countries and country-level pathogen composition to quantify pathogen outbreak, emergence, and re-emergence potential as a function of time (e.g., number of years between training and prediction), pathogen type (e.g., virus), and transmission mode (e.g., vector-borne). We find that while outbreak and re-emergence potential are well captured by our simple model, prediction of emergence events remains elusive, and sudden global emergences like an influenza pandemic seem beyond the predictive capacity of the model. While our approach allows for dynamic predictability of outbreak and re-emergence events, data deficiencies and the stochastic nature of emergence events may preclude accurate prediction. Together, our results make a compelling case for incorporating a community ecological perspective into existing disease forecasting efforts.


2021 ◽  
Vol 17 (2) ◽  
pp. e1008618
Author(s):  
Johannes Bracher ◽  
Evan L. Ray ◽  
Tilmann Gneiting ◽  
Nicholas G. Reich

For practical reasons, many forecasts of case, hospitalization, and death counts in the context of the current Coronavirus Disease 2019 (COVID-19) pandemic are issued in the form of central predictive intervals at various levels. This is also the case for the forecasts collected in the COVID-19 Forecast Hub (https://covid19forecasthub.org/). Forecast evaluation metrics like the logarithmic score, which has been applied in several infectious disease forecasting challenges, are then not available as they require full predictive distributions. This article provides an overview of how established methods for the evaluation of quantile and interval forecasts can be applied to epidemic forecasts in this format. Specifically, we discuss the computation and interpretation of the weighted interval score, which is a proper score that approximates the continuous ranked probability score. It can be interpreted as a generalization of the absolute error to probabilistic forecasts and allows for a decomposition into a measure of sharpness and penalties for over- and underprediction.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Dylan B. George ◽  
Wendy Taylor ◽  
Jeffrey Shaman ◽  
Caitlin Rivers ◽  
Brooke Paul ◽  
...  

2011 ◽  
Vol 21 (5) ◽  
pp. 1443-1460 ◽  
Author(s):  
Shannon L. LaDeau ◽  
Gregory E. Glass ◽  
N. Thompson Hobbs ◽  
Andrew Latimer ◽  
Richard S. Ostfeld

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Chelsea S. Lutz ◽  
Mimi P. Huynh ◽  
Monica Schroeder ◽  
Sophia Anyatonwu ◽  
F. Scott Dahlgren ◽  
...  

Abstract Background Infectious disease forecasting aims to predict characteristics of both seasonal epidemics and future pandemics. Accurate and timely infectious disease forecasts could aid public health responses by informing key preparation and mitigation efforts. Main body For forecasts to be fully integrated into public health decision-making, federal, state, and local officials must understand how forecasts were made, how to interpret forecasts, and how well the forecasts have performed in the past. Since the 2013–14 influenza season, the Influenza Division at the Centers for Disease Control and Prevention (CDC) has hosted collaborative challenges to forecast the timing, intensity, and short-term trajectory of influenza-like illness in the United States. Additional efforts to advance forecasting science have included influenza initiatives focused on state-level and hospitalization forecasts, as well as other infectious diseases. Using CDC influenza forecasting challenges as an example, this paper provides an overview of infectious disease forecasting; applications of forecasting to public health; and current work to develop best practices for forecast methodology, applications, and communication. Conclusions These efforts, along with other infectious disease forecasting initiatives, can foster the continued advancement of forecasting science.


Author(s):  
Adrian F. van Dellen

The morphologic pathologist may require information on the ultrastructure of a non-specific lesion seen under the light microscope before he can make a specific determination. Such lesions, when caused by infectious disease agents, may be sparsely distributed in any organ system. Tissue culture systems, too, may only have widely dispersed foci suitable for ultrastructural study. In these situations, when only a few, small foci in large tissue areas are useful for electron microscopy, it is advantageous to employ a methodology which rapidly selects a single tissue focus that is expected to yield beneficial ultrastructural data from amongst the surrounding tissue. This is in essence what "LIFTING" accomplishes. We have developed LIFTING to a high degree of accuracy and repeatability utilizing the Microlift (Fig 1), and have successfully applied it to tissue culture monolayers, histologic paraffin sections, and tissue blocks with large surface areas that had been initially fixed for either light or electron microscopy.


2003 ◽  
Vol 6 (3) ◽  
pp. 189-197 ◽  
Author(s):  
A. A. Cunningham ◽  
V. Prakash ◽  
D. Pain ◽  
G. R. Ghalsasi ◽  
G. A. H. Wells ◽  
...  
Keyword(s):  

2006 ◽  
Vol 40 (2) ◽  
pp. 20
Author(s):  
SHERRY BOSCHERT
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document